WYBRANE ZAGADNIENIA ELEKTROTECHNIKI

WIZUALIZACJA KOMPUTEROWA

DARIUSZ JÓŹWIK

Wydanie pierwsze

Książka dla elektryków i elektroników

PIOTRKÓW TRYBUNALSKI 2012

Wykaz najważniejszych oznczeń i symboli	6
Zestawinie najważniejszych jednostek	8
Przedmowa	9
1. Układ jednostek SI	11
2. Napięcie elektryczne	13
3. Prąd elektryczny	13
4. Elementy pasywne	14
4.1. Rezystor idealny	14
4.2. Cewka idealna	14
4.3. Kondensator idealny	15
5. Źródło idealne i rzeczywiste	15
5.1. Źródło idealne napięcia	15
5.2. Źródło idealne prądu	16
5.3. Źródło rzeczywiste	16
6. Łączenie szeregowe i równoległe elementów pasywnych i źródeł	16
6.1. Połączenie szeregowe i równoległe rezystorów	16
6.2. Połączenie szeregowe i równoległe cewek	17
6.3. Połączenie szeregowe i równoległe kondensatorów	17
6.4. Połączenie szeregowe i równoległe źródła idealnego napięcia	18
6.5. Połączenie szeregowe i równoległe źródła idealnego prądu	18
6.6. Połączenie szeregowe i równoległe źródła rzeczywistego	19
7. Prawo Ohma	20
8. Prawa Kirchhoffa	20
8.1. I prawo Kirchhoffa	20
8.2. II prawo Kirchhoffa	21
9. Energia, moc i sprawność prądu stałego	21

10. Rozwiązywanie obwodów rozgałęzionych	22
10.1. Metoda Kirchhoffa	22
10.2. Metoda oczkowa	23
10.3. Metoda Thevenina	25
10.4. Metoda Nortona	27
10.5. Metoda potencjałów węzłowych	29
11. Napięcia i prądy sinusoidalne	32
11.1. Napięcia i prądy sinusoidalne jednofazowe	32
11.2. Napięcia sinusoidalne trójfazowe, układ zgodny symetryczny	34
12. Elementy idealne R, L, C zasilane napięciem sinusoidalnym	35
12.1. Rezystor idealny R zasilany napięciem sinusoidalnym	35
12.2. Cewka idealna L zasilana napięciem sinusoidalnym	36
12.3. Kondensator idealny C zasilany napięciem sinusoidalnym	38
13 Obwód szeregowy RIC rezonans nanjeć i trójkat impedancij	30
13. Obwod szeregówy kże, rezonans napięc i uojkąt impedancji	57
14. Obwód równoległy RLC, rezonans prądów i trójkąt admitancji	44
15. Moc odbiornika jednofazowego i trójfazowego	49
15.1. Moc odbiornika jednofazowego, trójkąt mocy	49
15.2. Moc odbiornika trójfazowego	50
16. Obwody trójfazowe generator – odbiornik	52
16.1. Układ gwiazda – gwiazda	52
16.2. Układ gwiazda – gwiazda zwarty przewodem neutralnym	57
16.3. Układ gwiazda – gwiazda z impedancją w przewodzie	
neutralnym	59
16.4. Układ trójąt – gwiazda	61
16.5. Układ trójkąt – trójkąt	65
17 Składowe symetryczne	69
	07
18. Stany nieustalone – metoda klasyczna	73
18.1. Ładowanie kondensatora, wymuszenie stałe	73
18.2. Rozładowywanie kondensatora	76
18.3. Magnesowanie cewki, wymuszenie stałe	77
18.4. Rozmagnesowywanie cewki	79
18.5. Kondensator zasilany napięciem sinusoidalnym	81
18.6. Cewka zasilana napięciem sinusoidalnym	86
18.7. Obwód szeregowy RLC zasilany napięciem sinusoidalnym	91

19. Stany nieustalone – metoda operatorowa	
19.1. Prawo Ohma w postaci operatorowej	
19.2. I prawo Kirchhoffa w postaci operatorowej	
19.3. II prawo Kirchhoffa w postaci operatorowej	
19.4. Impedancja operatorowa	
19.5. Admitneja operatorowa	
19.6. Przykłady zastosowania metody operatorowej do oblicza	nia
obwodów stanów nieustaloych	
·	
20. Filtry	116
20.1. Filtr dolnoprzepustowy <i>LC</i> typu T	116
20.2. Filtr dolnoprzepustowy RC typu T	119
20.3. Filtr górnoprzepustowy LC typu T	121
20.4. Filtr górnoprzepustowy <i>RC</i> typu T	
20.5. Filtr pasmowy środkowo-przepustowy	
20.6. Filtr pasmowy środkowo-zaworowy	
21. Linia długa	
22. Przekształcenie Fouriera	147
23. Obwody nieliniowe	
23.1. Rezystancja statyczna	
23.2. Rezysancja dynamiczna	151
23.3. Przykłady elementów nieliniowych	151
04 D 1 114 44	150
24. Pole elektrostatyczne	153
	177
25. Statyczne pole magnetyczne	10/
26 Dala i fala alalitzama anatuazza	100
20. Pole I fale elektromagnetyczne	180
Literature	107
слегашга	

WYKAZ NAJWAŻNIEJSZYCH **OZNACZEŃ I SYMBOLI**

 $abla^2$ – laplasjan skalarny

 Δ – laplasjan wekorowy

A – potencjał wektorowy pola magnetycznego

A – składowa potencjału wektorowego **A** względem osi z

<u>A</u> – składowa potencjału wektorowego A względem osi z (wartość zespolona)

a – operator obrotu o 120° w dodatnim kierunku trygonometrycznym

arg z – argument liczby zespolonej z

B – susceptancja

C – pojemność

e – wartość chwilowa napiecia źródłowego

E – napięcie źródłowe, wartość skuteczna napięcia źródłowego

<u>E</u> – wartość zespolona napięcia źródłowego

 \overline{E}_m – wartość maksymalna napięcia źródłowego

f - częstotliwość

F(s) – transformata Laplace'a funkcji f(t)

G – konduktancja, przewodność

i – wartość chwilowa prądu

 i_p – składowa przejściowa prądu

 i_{u} – składowa ustalona prądu

I – natężenie prądu stałego, wartość skuteczna prądu

<u>I</u> – wartość zespolona prądu

 $\overline{I_m}$ – wartość maksymalna prądu

Im z – część urojona liczby zespolonej z

I(s) – transformata Laplace'a prądu j – jedność urojona

L – indukcyjność

p – moc chwilowa, współczynnik materiałowy (dla pola elektrostatycznego $p = \varepsilon$, dla pola magnetostatycznego i elektromagnetycznego $p = 1 / \mu$)

P - moc czynna

Q - moc bierna

 \tilde{R} – rezystancja

Re z – część rzeczywista liczb zespolonej z

s - zmienna zespolona w przekształceniu Laplace'a

S - moc pozorna

<u>S</u> – moc pozorna zespolona

t - czas

T – okres przebiegu okresowego

u – wartość chwilowa napięcia

 u_p – składowa przejściowa napięcia

 $\dot{u_u}$ – składowa ustalona napięcia

U – napięcia stałe, wartość skuteczna napięcia

 \underline{U} – wartość zespolona napięcia U_m – wartość maksymalna napięcia

- U(s) transformata Laplace'a napięcia
- v prędkość
- w wartość chwilowa energii
- W praca, energia
- X reaktancja
- Y admitancja
- \underline{Y} admitancja zespolona
- $\overline{Y(s)}$ transformata Laplace'a admitancji
- |z| moduł liczby zespolonej z
- z^* liczba zespolona sprzężona do zZ impedancja
- \underline{Z} impedancja zespolona
- \underline{Z}_f impedancja falowa zespolona linii długiej $\overline{Z}(s)$ transformata Laplace'a impedancji
- α stała tłumienia, tłumienność jednostkowa
- β stała fazowa, przesuwność jednostkowa
- γ stała przenoszenia linii długiej
- τ stała czasowa
- φ kąt przesunięcia fazowego
- φ_i faza prądu
- φ_u faza napięcia
- ψ skojarzony strumień magnetyczny
- ω pulsacja
- ω_n pulsacja drgań nietłumionych
- ω_0 pulsacja drgań własnych
- MES metoda elementów skończonych
- MEB metoda elementów brzegowych
- MRZ metoda rozdzielania zmiennych

ZESTAWIENIE NAJWAŻNIEJSZYCH JEDNOSTEK

In	L n Wielkość	Jednostka		
Lp.	wielkosc	oznaczenie	nazwa	
1	Czas	S	sekunda	
2	Częstotliwość	Hz	herc	
3	Długość	m	metr	
4	Gęstość ładunku liniowego	C/m	kulomb na metr	
5	Gęstość ładunku powierzchniowego	C/m ²	kulomb na metr kw.	
6	Gęstość ładunku przestrzennego	C/m ³	kulomb na metr sześc.	
7	Gęstość prądu	A/m ²	amper na metr kw.	
8	Indukcja elektryczna	C/m ²	kulomb na metr kw.	
9	Indukcja magnetyczna	Т	tesla	
10	Indukcyjność	Н	henr	
11	Kąt płaski	rad	radian	
12	Konduktancja	S	simens	
13	Konduktywność	S/m	simens na metr	
14	Ładunek elektryczny	С	kulomb	
15	Masa	kg	kilogram	
16	Moc czynna	W	wat	
17	Moc bierna	var	war	
18	Moc pozorna	V·A	woltoamper	
19	Napięcie, potencjał, SEM	V	wolt	
20	Natężenie pola elektrycznego	V/m	wolt na metr	
21	Natężenie pola magnetycznego	A/m	amper na metr	
22	Natężenie prądu	А	amper	
23	Pojemność	F	farad	
24	Praca, energia	J	dżul	
25	Przenikalność elektryczna	F/m	farad na metr	
26	Przenikalność magnetyczna	H/m	henr na metr	
27	Pulsacja	rad/s	radian na sekundę	
28	Rezystancja	Ω	om	
29	Rezystywność	Ω·m	omometr	
30	Siła	N	niuton	
31	Strumień magnetyczny	Wb	weber	
32	Temperatura	K	kelwin	

PRZEDMOWA

Książkę napisałem zgodnie ze swoimi zainteresowaniami i posiadanym wykształceniem. Przeznaczona jest dla osób uczących się lub interesujących się elektrotechniką.

Przedstawia wybrane wielkości i zagadnienia elektrotechniki oraz ich wizualizację. Należy zaznaczyć, że teraźniejsza elektrotechnika opiera się na zjawiskach statycznego pola ładunków elektrycznych lub na ich ruchu postępowym lub wirowym, najczęściej elektronów. Sprowadza się to do wytworzenia pola elektrostatycznego, statycznego pola magnetycznego lub pola elektromagnetycznego. Z teorii elektrotechniki, teorii obwodów i teorii pola elektromagnetycznego narodziły się wynalazki, które dziś są niezbędne w życiu codziennym człowieka i istnieniu przemysłu, między innymi począwszy od zwykłej lampy żarowej (żarówki) zasilanej energią elektrownie i urządzenia elektroniczne i telekomunikacyjne.

W książce przeprowadzono szeroką wizualizację komputerową większości przedstawionych zagadnień elektrotechniki. Wizualizacja ma na celu pomóc i ułatwić czytelnikowi w zrozumieniu podanych zagadnień najczęściej podstawowych. Jednakże czytelnik nie może uważać, że przedstawiony materiał w niniejszej książce jest wystarczający i powinien pogłębiać wiedzę w dostępnej literaturze z powodu częściowego wyboru materiału i braku wyprowadzeń niektórych wzorów.

Niniejsza książka jest częściowym uzupełnieniem dostępnej literatury dydaktycznej.

Autor

1. UKŁAD JEDNOSTEK SI

Obecnie na świecie we wszystkich dziedzinach nauki i techniki stosowany jest przyjęty na XI Generalnej Konferencji Miar w Paryżu 1960 r. międzynarodowy układ jednostek miar SI^{*}), obejmujący

a) jednostki podstawowe, przyjęte niezależnie od siebie

b) jednostki uzupełniające

c) jednostki pochodne

W Polsce układ jednostek SI wprowadzony został rozporządzeniem Rady Ministrów w 1966 r. (Dz. U. Nr 25 z dnia 30 czerwca 1965 r., poz. 154).

Jednostkami podstawowymi w układzie SI są jednostki siedmiu wielkości

a) jednostka długości zwana metrem, skrót m

b) jednostka masy zwana kilogramem, skrót kg

c) jednostka czasu zwana sekundą, skrót s

d) jednostka natężenia prądu elektrycznego zwana amperem, skrót A

e) jednostka temperatury zwana kelwinem, skrót K

f) jednostka liczebności materii zwana molem, skrót mol

g) jednostka światłości zwana kandelą, skrót cd

Jednostkami uzupełniającymi w układzie SI, które mają charakter jednostek podstawowych, są

a) jednostka kąta płaskiego zwana radianem, skrót rad

b) jednostka kąta bryłowego zwana steradianem, skrót sr

Wszystkie pozostałe wielkości wyrażone za pomocą wielkości podstawowych nazywamy wielkościami pochodnymi.

W tabeli 1.1 zestawiono określenia jednostek podstawowych i uzupełniających w układzie SI.

Wielkośś	Jednostki miary		Definicio	
wielkose	nazwa	oznaczenie	Dennicja	
		Jednostki j	podstawowe	
długość	metr	m	metr jest długością równą 1 650 763,73 długości fali w próżni promieniowania odpo- wiadającego przejściu między poziomami $2p_{10}$ a 5d ₅ atomu kryptomu 86	
masa	kilogram	kg	kilogram jest masą międzynarodowego wzorca tej jednostki przechowywanego w Międzynarodowym Biurze Miar w Sévres	
czas	sekunda	S	sekunda jest czasem trwania 9 192 631 770 okresów promieniwania, odpowiadającemu przejściu między dwoma nadsubtelnymi poziomami stanu podstawowego atomu cezu 133	

Tabela 1.1. Jednostki miar układu SI

*) Litery SI są skrótem słów francuskich "system international", tj. układ międzynarodowy

prąd elektryczny	amper	A	amper jest prądem elektrycznym nie zmieniającym się, który – płynąc w dwóch równoległych prostoliniowych, nieskończenie długich przewodach, o przekroju okrągłym znikomo małym, umieszczonych w próżni w odległości 1 m jeden od drugiego – wywołałby między tymi przewodami siłę 2·10 ⁻⁷ N (niuton) na każdy metr długości
temperatura	kelwin	К.	kelwin jest to 1/273,16 część temperatury termodynamicznej punktu potrójnej wody
liczebność materii	mol	mol	mol jest to liczność materii występująca, gdy liczba cząstek jest równa liczbie atomów zawartych w masie 0,012 kg węgla 12
światłość	kandela	cd	kandela jest światłością, która ma w kierunku prostopadłym pole 1/6·10 ⁵ m ² powierzchni ciała doskonale czarnego, promieniującego w temperaturze krzepnięcia platyny pod ciśnieniem 101 325 Pa (paskali)
		Jednostki u	zupełniające
kąt płaski	radian	rad	radian jest kątem płaskim zawartym między dwoma promieniami koła, wycinającym z okręgu tego koła łuk o długości równej promeniowi
kąt bryłowy	steradian	sr	steradian jest kątem bryłowym o wierzchołku w środku kuli wycinającym z powierzchni tej kuli pole równe kwadratowi jej promienia

Czasem zapisywanie wielkości w jednostkach układu SI jest kłopotliwe ze względu na to, iż jednostka główna jest zbyt duża lub zbyt mała. By uprościć zapis wprowadza się jednostki krotne (wielokrotne lub podwielokrotne) w stosunku do jednostek głównych układu SI.

W tabeli 1.2 zestawiono przedrostki i odpowiadające im mnożniki stosowanych jednostek krotnych.

Skrót	Przedrostek	Mnożnik	Skrót	Przedrostek	Mnożnik
Е	eksa	10^{18}	d	decy	10-1
Р	peta	10^{15}	с	centy	10-2
Т	tera	10^{12}	m	mili	10-3
G	giga	10^{9}	μ	mikro	10-6
М	mega	10^{6}	n	nano	10-9
k	kilo	10^{3}	р	piko	10-12
h	hekto	10^{2}	f	femto	10-15
da	deka	10^{1}	а	atto	10^{-18}

Tabela 1.2. Przedrostki i odpowiadające im mnożniki

2. NAPIĘCIE ELEKTRYCZNE

Napięciem elektrycznym nazywamy różnice potencjałów pomiędzy dwoma punktami A i B

$$U_{AB} = V_A - V_B \tag{2.1}$$

Jednostką napięcia elektrycznego w układzie SI jest wolt (V).

W teorii potencjałem dowolnego punktu np. A nazywamy stosunek pracy wykonanej w polu elektrycznym przy przenoszeniu małego ładunku próbnego q od punktu A do nieskończoności do ładunku q.

$$V_{A} = \frac{W_{A\infty}}{q}$$

$$V_{A} = \frac{W_{A\infty}}{q}$$

$$(2.2)$$

Rys. 2.1. Praca przy wynoszeniu małego ładunku próbnego q do nieskończoności

Jednostką potencjału elektrycznego podobnie jak napięcia jest wolt (V). Potencjał elektryczny V jest wielkością skalarną a więc posiada tylko wartość punktową w węźle lub przestrzeni.

Bezpośrednio wynika z tego, że napięcie elektryczne pomiędzy dwoma punktami A, B odpowiada stosunkowi pracy wykonanej w polu elektrycznym przy przenoszeniu małego ładunku próbnego q od punktu A do punktu B do ładunku q.

$$V_{A} = \frac{Q}{dl} \xrightarrow{F} \dots \xrightarrow{V_{B}} U_{AB} = \frac{W_{AB}}{Q}$$
(2.3)

Rys. 2.2. Praca przy przenoszeniu małego ładunku próbnego q od punktu A do punktu B

3. PRĄD ELEKTRYCZNY

Prądem elektrycznym nazywamy uporządkowany przepływ elektronów w strukturze atomowej przewodnika.

Rys. 3.1. Ilustracja przepływu prądu elektrycznego przez przewodnik, *I* – droga przepływu elektronów, 2 – jądro atomu, *3* – kierunek wirowania elektronów

Miarą prądu elektrycznego jest stosunek ilości ładunku elektrycznego ΔQ przepływającego przez przekrój poprzeczny przewodnika do przedziału czasu Δt , w którym przepływ ładunku nastąpił

$$i = \frac{\Delta Q}{\Delta t} \tag{3.1}$$

Jednostką natężenia prądu elektrycznego w układzie SI jest amper (A).

Amper jest prądem elektrycznym nie zmieniającym się w czasie, który płynąc w dwóch równoległych prostoliniowych nieskończenie długich przewodach o przekroju okrągłym znikomo małym, umieszczonych w próżni w odległości 1 m jeden od drugiego wywołałby między tymi przewodami siłę $2 \cdot 10^{-7}$ N (niuton) na każdy metr długości.

W praktyce często spotyka się wielkość zwaną gęstością prądu *J*. Gęstość prądu wyraża stosunek przepływającego prądu do powierzchni poprzecznej przewodnika przez którą prąd przepływa

$$J = \frac{I}{S} \tag{3.2}$$

gdzie I – natężenie prądu, S – powierzchnia poprzeczna przewodnika. Gęstość prądu J w układzie SI wyrażana jest przez amper na metr kwadratowy (A/m²).

4. ELEMENTY PASYWNE

4.1. Rezystor idealny

Rezystor idealny przedstawia jedynie opór dla przepływającego prądu. Nie wytwarza natomiast pola elektrycznego ani magnetycznego. Energia tracona na rezystorze przekształca się w energię cieplną, która ulega rozproszeniu w otaczającym środowisku. Parametrem charakteryzującym rezystor jest rezystancja R lub konduktancja G czyli przewodność, przy czym

$$\frac{R}{\text{Rys. 4.1. Symbol graficzny}} \qquad \qquad G = \frac{1}{R} \qquad (4.1)$$

W układzie jednostek SI jednostką rezystancji jest om (Ω) , a jednostką konduktancji jest simens (S).

4.2. Cewka idealna

Cewką idealną nazywamy element, w którym pod wpływem przypływu prądu dochodzi do wytwarzania pola magnetycznego. W cewce idealnej pomija się rezystancję oraz pojemność. Parametrem charakteryzującym cewkę idealną jest indukcyjność *L*, której jednostką w układzie SI jest henr (H).

Rys. 4.2. Symbol graficzny cewki idealnej

Indukcyjność L cewki jest równa ilorazowi strumienia skojarzonego ψ i prądu *i* w uzwojeniu cewki, czyli

$$L = \frac{\psi}{i} \tag{4.2}$$

Jeżeli dojdzie do wzrostu lub zaniku w czasie płynącego prądu przez cewkę, dochodzi do indukcji elektromagnetycznej. Siła elektromotoryczna indukowana w uzwojeniu cewki wyraża się wzorem

$$e = L\frac{di}{dt} \tag{4.3}$$

4.3. Kondensator idealny

Kondensatorem idealnym nazywamy element, w którym dochodzi do gromadzenia ładunku elektrycznego na jego okładkach. Jednocześnie pomijamy stratność dielektryka przyjmując, że jego rezystancja jest nieskończenie wielka jak również to, że w kondensatorze może dochodzić do wytwarzania pola magnetycznego. Parametrem charakteryzującym kondensator jest pojemność C, której jednostką w układzie SI jest farad (F).

Rys. 4.3. Symbol graficzny

kondensatora idealnego

Pojemność C kondensatora jest równa ilorazowi ładunku Q na okładce kondensatora i napięcia u między okładkami, czyli

 $C = \frac{Q}{u} \tag{4.4}$

Gdy napięcie *u* jest zmienne w czasie, wówczas w gałęzi zawierającej kondensator płynie prąd

$$i = \frac{dQ}{dt} \tag{4.5}$$

a w przypadku kondensatora liniowego (C = const.)

$$i = C \frac{du}{dt} \tag{4.6}$$

5. ŹRÓDŁO IDEALNE I RZECZYWISTE

5.1. Źródło idealne napięcia

Źródłem idealnym napięciowym nazywamy takie źródło, w którym napięcie nie zależy od prądu obciążenia, tzn. U = const. Przyjmujemy, że rezystancja wewnętrzna takiego źródła równa jest zeru $R_w = 0$, czyli prąd obciążenia nie wywołuje spadku napięcia na źródle.

Rys. 5.1. Symbol graficzny idealnego źródła napięciowego

5.2. Źródło idealne prądu

Źródłem idealnym prądu nazywamy takie źródło, w którym wydzielany prąd nie zależy od rezystancji obciążenia, I = const. Przyjmujemy, że rezystancja wewnętrzna takiego źródła jest nieskończenie duża $R_w \rightarrow \infty$. W obwodzie napotkana rezystancja

J (

Rys. 5.2. Symbol graficzny idealnego źródła prądowego

obciążenia jest niewielka w porównaniu z rezystancją wewnętrzną idealnego źródła prądu $R_w >> R_0$, zatem rezystancja obciążenia nie ma wpływu na wydajność prądową źródła.

5.3. Źródło rzeczywiste

Źródłem rzeczywistym nazywamy takie źródło, w którym uwzględnia się zależny od prądu obciążenia, spadek napięcia na rezystancji wewnętrznej źródła R_w . Źródło rzeczywiste można przedstawić jako szeregowe połączenie idealnego źródła napięciowego i rezystora stanowiącego rezystancję wewnętrzną źródła rzeczywistego.

Rys. 5.3. Symbol graficzny źródła rzeczywistego

6. ŁĄCZENIE SZEREGOWE I RÓWNOLEGŁE ELEMENTÓW PASYWNYCH I ŹRÓDEŁ

6.1. Połączenie szeregowe i równoległe rezystorów

Rezystancja zastępcza R_z szeregowo połączonych rezystorów wyraża się wzorem

 $\stackrel{R_2}{---} \stackrel{R_n}{----} \iff R_z = R_1 + R_2 + \ldots + R_n$

Rys. 6.1. Połączenie szeregowe rezystorów, rezystancja zastępcza

Dla *n* rezystorów połączonych szeregowo o jednakowej wartości rezystancji wzór (6.1) przybiera postać

$$R_z = nR \tag{6.2}$$

Rezystancja zastępcza R_z równolegle połączonych rezystorów wyraża się wzorem

16

(6.1)

$$\frac{1}{R_z} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n}$$
(6.3)

Rys. 6.2. Połączenie równoległe rezystorów, rezystancja zastępcza

Dla dwóch rezystorów wzór (6.3) przyjmuje postać

$$R_z = \frac{R_1 R_2}{R_1 + R_2} \tag{6.4}$$

6.2. Połączenie szeregowe i równoległe cewek

Indukcyjność zastępcza Lz szeregowo połączonych cewek wyraża się wzorem

Rys. 6.3. Połączenie szeregowe cewek, indukcyjność zastępcza

Indukcyjność zastępcza L_z równolegle połączonych cewek wyraża się wzorem

Rys. 6.4. Połączenie równoległe cewek, indukcyjność zastępcza

6.3. Połączenie szeregowe i równoległe kondensatorów

Pojemność zastępcza C_z szeregowo połączonych kondensatorów wyraża się wzorem

Rys. 6.5. Połączenie szeregowe kondensatorów, pojemność zastępcza

Pojemność zastępcza C_z równoleg
le połączonych kondensatorów wyraża się wzorem

$$C_z = C_1 + C_2 + \ldots + C_n$$
 (6.8)

Rys. 6.6. Połączenie równoległe kondensatorów, pojemność zastępcza

6.4. Połączenie szeregowe i równoległe źródła idealnego napięcia

Przy połączeniu szeregowym idealnych źródeł napięcia, wypadkowa siła elektromotoryczna sumuje się.

$$E_{1} \bigoplus_{E_{2}} E = E_{1} + E_{2}$$

$$(6.9)$$

Rys. 6.7. Połączenie szeregowe idealnych źródeł napięcia

Połączenie równoległe idealnych źródeł napięcia dopuszczalne jest tylko w przypadku gdy $E_1 = E_2$. W przeciwnym przypadku $(E_1 \neq E_2)$ płyną prądy zwarciowe wyrównawcze.

$$E_1 \bigoplus E_2 \bigoplus E \qquad \qquad E = E_1 = E_2 \qquad (6.10)$$

Rys. 6.8. Połączenie równoległe idealnych źródeł napięcia

6.5. Połączenie szeregowe i równoległe źródła idealnego prądu

Szeregowe połączenie źródeł prądu dopuszczalne jest tylko w przypadku gdy $J_1 = J_2$.

$$J = J_1 = J_2 \tag{6.11}$$

Rys. 6.9. Połączenie szeregowe idealnych źródeł prądu

Wydajność idealnych źródeł prądu przy połączeniu równoległym określa się z I prawa Kirchhoffa

Rys. 6.10. Połączenie równoległe idealnych źródeł prądu

6.6. Połączenie szeregowe i równoległe źródła rzeczywistego

Przy połączeniu szeregowym źródeł rzeczywistych, wypadkowa siła elektromotoryczna oraz rezystancja wewnętrzna źródeł sumuje się

$$E = E_1 + E_2 \tag{6.13}$$

$$R_{w} = R_{w1} + R_{w2} \tag{6.14}$$

Połączenie szeregowe źródeł rzeczywistych stosuje się w celu zwiększenia wypadkowej wartości siły elektromotorycznej.

Połączenie równoległe źródeł rzeczywistych dopuszczalne jest tylko w przypadku gdy siły elektromotoryczne źródeł są sobie równe, tzn. $E_1 = E_2$. W przeciwnym przypadku $(E_1 \neq E_2)$ płyną prądy wyrównawcze ograniczone przez rezystancje wewnętrzną źródeł. Przy spełnionym warunku otrzymujemy

$$E = E_1 = E_2 (6.15)$$

$$R_{w} = \frac{R_{w1}R_{w2}}{R_{w1} + R_{w2}} \tag{6.16}$$

Połączenie równoległe źródeł rzeczywistych jest korzystne ze względu na zmniejszenie rezystancji wewnętrznej w stosunku do pojedynczego źródła. Wynikiem tego jest większa stabilność napięcia wyjściowego źródła od prądu obciążenia, tzn. występuje mniejszy spadek napięcia na źródle.

7. PRAWO OHMA

Prąd w przewodniku jest wprost proporcjonalny do przyłożonego do jego końców napięcia, a odwrotnie proporcjonalny do rezystancji przewodnika

$$I = \frac{U}{R} \tag{7.1}$$

Rys. 7.2. Ilustracja prawa Ohma, zależność prądu od napięcia zasilającego i rezystancji obwodu I = f(U, R) dla U = 0...100V, $R_1 = 5\Omega$, $R_2 = 10\Omega$, $R_3 = 20\Omega$

8. PRAWA KIRCHHOFFA

8.1. I prawo Kirchhoffa

Suma prądów dopływających do dowolnego węzła obwodu elektrycznego jest równa sumie prądów odpływających od węzła.

8.2. II prawo Kirchhoffa

W dowolnym oczku obwodu elektrycznego prądu stałego suma sił elektromotorycznych i spadków napięć na elementach rezystancyjnych jest równa zeru.

Rys. 8.2a) Oczko obwodu elektrycznego, b) oznaczenie sił elektromotorycznych i spadków napięć w oczku

9. ENERGIA, MOC I SPRAWNOŚĆ PRĄDU STAŁEGO

Energia elektryczna (z fizyki energia równa się pracy) pobrana przez odbiornik o mocy P w czasie t wyraża się wzorem

$$W = Pt \tag{9.1}$$

Jednostką energii elektrycznej w układzie SI jest kilowatogodzina (kW·h). Mocą odbiornika nazywamy stosunek wydatkowanej pracy W przez odbiornik do czasu pracy t

$$P = \frac{W}{t} \tag{9.2}$$

lub jako iloczyn napięcia i prądu odbiornika

$$P = UI \tag{9.3}$$

Dla U = IR oraz I = U/R otrzymujemy również

$$P = I^2 R \tag{9.4}$$

$$P = \frac{U^2}{R} \tag{9.5}$$

Jednostką mocy w układzie SI jest wat (W).

Sprawnością odbiornika nazywamy stosunek mocy użytecznej wydatkowanej przez odbiornik do mocy pobieranej przez odbiornik ze źródła

$$\eta = \frac{P_2}{P_1} \tag{9.6}$$

gdzie P_2 – moc użyteczna wydatkowana przez odbiornik, P_1 – moc pobierana przez odbiornik ze źródła.

Sprawność odbiornika jest bezwymiarowa lub wyrażana w procentach

$$\eta_{\%} = \frac{P_2}{P_1} \cdot 100\% \tag{9.7}$$

10. ROZWIĄZYWANIE OBWODÓW ROZGAŁĘZIONYCH

Poniżej podane metody rozwiązywania obwodów rozgałęzionych są najbardziej popularne i najczęściej stosowane. Mogą być zastosowane do rozwiązywania obwodów prądu stałego lub sinusoidalnie zmiennego.

W przypadku obwodów prądu stałego rozpatrujemy rezystancje odbiorników R oraz napięcia i prądy w obwodzie wyrażone za pomocą liczb rzeczywistych. W przypadku obwodów prądu sinusoidalnie zmiennego zamiast rezystancji R rozpatruje się impedancję \underline{Z} odbiorników (pojęcie impedancji jest wyjaśnione w rozdziale 13). Impedancję \underline{Z} wyraża się za pomocą liczb zespolonych

$$\underline{Z} = R + jX \tag{10.1}$$

Napięcia i prądy na poszczególnych elementach obwodu wówczas również wyrażamy za pomocą liczb zespolonych <u>U</u>, <u>I</u>.

Poniżej zostaną przedstawione metody dla prądu stałego gdzie szukane wielkości zastaną wyrażone za pomocą liczb rzeczywistych R, U, I.

10.1. Metoda Kirchhoffa

Dla przykładu rozpatrzmy obwód elektryczny rys. 10.1, w którym znane są wartości sił elektromotorycznych źródeł napięciowych E_1 , E_2 , E_3 , prąd źródłowy J_1 i wartości rezystancji rezystorów R_1 , R_2 , R_3 , R_4 , R_5 , R_6 . Szukamy prądów gałęziowych I_1 , I_2 , I_3 , I_4 , I_5 , spadku napięcia na źródle prądowym U_x oraz spadków napięć na rezystorach U_{R1} , U_{R2} , U_{R3} , U_{R4} , U_{R5} , U_{R6} .

Metoda Kirchhoffa polega na ułożeniu

- (n 1) równań prądu dla węzłów obwodu z I prawa Kirchhoffa, gdzie n – ilość węzłów obwodu,
- dla każdego oczka obwodu równania napięć z II prawa Kirchhoffa.

Dla obwodu z rys. 10.1 dla węzłów *A*, *B*, *C* i oczek *1*, *2*, *3* zgodnie z metodą Kirchhoffa otrzymujemy układ równań

Rys. 10.1. Rozwiązywany obwód

$$\begin{cases}
I_{3} - J_{1} - I_{4} = 0 \\
I_{2} + I_{5} - I_{3} = 0 \\
I_{1} + I_{4} - I_{5} = 0 \\
E_{1} - U_{R4} - U_{R3} - U_{R1} - U_{x} = 0 \\
E_{3} - U_{R5} - U_{R6} + U_{R4} - E_{1} = 0 \\
U_{R2} + U_{R3} + U_{R6} - E_{2} = 0
\end{cases}$$
(10.2)

Dla

$$U_{R1} = R_1 J_1 \tag{10.3}$$

$$U_{R2} = R_2 I_4 \tag{10.4}$$

$$U_{R3} = R_3 I_3 \tag{10.5}$$

$$U_{R4} = R_4 I_2 \tag{10.6}$$

$$U_{R5} = R_5 I_1 \tag{10.7}$$

$$U_{R6} = R_6 I_5 \tag{10.8}$$

porządkując względem niewiadomych układ równań (10.2) ostatecznie otrzymujemy

$$\begin{cases} I_{3} - I_{4} = J_{1} \\ I_{2} - I_{3} + I_{5} = 0 \\ I_{1} + I_{4} - I_{5} = 0 \\ R_{4}I_{2} + R_{3}I_{3} + U_{x} = E_{1} - R_{1}J_{1} \\ -R_{5}I_{1} + R_{4}I_{2} - R_{6}I_{5} = E_{1} - E_{3} \\ R_{3}I_{3} + R_{2}I_{4} + R_{6}I_{5} = E_{2} \end{cases}$$
(10.9)

Po rozwiązaniu układu równań (10.9) otrzymujemy szukane prądy obwodu I_1 , I_2 , I_3 , I_4 , I_5 oraz spadek napięcia na źródle prądowym U_x . Pozwala to wyznaczyć poszczególne spadki napięcia na rezystorach obwodu R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , wzory (10.3, 10.4, 10.5, 10.6, 10.7, 10.8).

10.2. Metoda oczkowa

Dla przykładu rozpatrzmy obwód elektryczny rys. 10.2, w którym oznaczymy wyimaginowane prądy oczkowe płynące w każdym oczku obwodu. Ponieważ obwód posiada trzy oczka, wyszczególniamy trzy prądy oczkowe I_1 , I_2 , I_3 . Metoda oczkowa polega na ułożeniu dla każdego oczka obwodu równania napięć z II prawa Kirchhoffa, uwzględniając oznaczone prądy oczkowe.

Rys. 10.2. Rozwiązywany obwód

Zakładamy także, że znane są nam siły elektromotoryczne źródeł napięciowych E_1, E_2, E_3 , prąd źródłowy J_1 oraz wartości rezystancji rezystorów $R_1, R_2, R_3, R_4, R_5,$ R_6 . Prąd oczkowy I_1 jest nam znany z uwagi na występowanie w oczku źródła prądowego J_1 , natomiast nie znany jest występujący na źródle prądowym spadek

napięcia U_x . Ponadto szukamy prądów gałęziowych I_1 , I_2 , I_3 , I_4 oraz spadków napięć na rezystorach U_{R1} , U_{R2} , U_{R3} , U_{R4} , U_{R5} , U_{R6} . Dla obwodu z rys. 10.2 zgodnie z metodą oczkową dla oczek I, 2, 3 (prądów

Dla obwodu z rys. 10.2 zgodnie z metodą oczkową dla oczek *1*, *2*, *3* (prądów oczkowych I_1 , I_2 , I_3) otrzymujemy równania

$$\begin{cases} E_1 - U_{R2} + U_{R1} + U_x = 0\\ -E_1 - E_2 - U_{R4} + U_{R3} + U_{R2} = 0\\ E_2 - U_{R5} - E_3 - U_{R6} + U_{R4} = 0 \end{cases}$$
(10.10)

Dla

$$U_{R1} = -R_1 I_1 = R_1 J_1, \quad I_1 = -J_1$$
(10.11)

$$U_{R2} = R_2 \left(I_1 - I_2 \right) = -R_2 \left(J_1 + I_2 \right)$$
(10.12)

$$U_{R3} = -R_3 I_2^{'} \tag{10.13}$$

$$U_{R4} = R_4 \left(I_2 - I_3 \right) \tag{10.14}$$

$$U_{R5} = R_5 I_3 \tag{10.15}$$

$$U_{R6} = R_6 I_3$$
 (10.16)

porządkując względem niewiadomych układ równań (10.10) ostatecznie otrzymujemy, przy czym prądy gałęziowe wyrażone są przez prądy oczkowe

$$\begin{cases} -R_2I_2 - U_x = E_1 + (R_1 + R_2)J_1 \\ (R_2 + R_3 + R_4)I_2 - R_4I_3 = -E_1 - E_2 - R_2J_1 \\ -R_4I_2 + (R_4 + R_5 + R_6)I_3 = E_2 - E_3 \end{cases}$$
(10.17)

$$I_1 = I_1' - I_2' = -J_1 - I_2'$$
(10.18)

$$I_2 = -I_2'$$
 (10.19)

$$I_{3} = I_{2}^{'} - I_{3}^{'} \tag{10.20}$$

$$I_4 = I_3^{'}$$
 (10.21)

0	Λ
~	4

Po rozwiązaniu układu równań (10.17) i uwzględnieniu równań (10.18, 10.19, 10.20, 10.21) otrzymujemy prądy oczkowe obwodu I_2 , I_3 , spadek napięcia na źródle prądowym U_x oraz prądy gałęziowe I_1 , I_2 , I_3 , I_4 . Z równań (10.11, 10.12, 10.13, 10.14, 10.15, 10.16) otrzymujemy spadki napięcia na rezystorach obwodu R_1 , R_2 , R_3 , R_4 , R_5 , R_6 wyrażone przez prądy oczkowe.

10.3. Metoda Thevenina

Metoda Thevenina stosowana jest do wyznaczania prądu w obwodzie elektrycznym tylko w jednej wybranej gałęzi. Polega ona na wyłączeniu z obwodu gałęzi, w której szukamy prądu i zastąpieniu pozostałego obwodu elektrycznego dwójnikiem aktywnym, który stanowi rzeczywiste źródło napięcia.

Rys. 10.3. Przekształcenie obwodu zgodnie z metodą Thevenina

Wyjaśnienia

- U_{AB} napięcie widziane z zacisków A, B po odłączeniu rozwiązywanej gałęzi z obwodu elektrycznego,
- R_{AB} rezystancja obwodu elektrycznego widziana z zacisków A, B po odłączeniu od obwodu rozwiązywanej gałęzi (przy wyznaczaniu rezystancji R_{AB} źródła napięciowe obwodu zwiera się, natomiast w przypadku występowania w gałęzi źródła prądowego, gałąź się rozwiera). Rezystancja R_{AB} z definicji metody Thevenina stanowi rezystancję wewnętrzną źródła napięciowego (dwójnika aktywnego),
- *R* rezystancja rozwiązywanej gałęzi,
- *I* szukany prąd gałęzi.

Prąd rozważanej gałęzi szukany metodą Thevenina wyraża się wówczas wzorem

$$I = \frac{U_{AB}}{R + R_{AB}} \tag{10.22}$$

Dla przykładu rozpatrzmy obwód elektryczny rys. 10.4, w którym będziemy szukać prądu *I* przepływającego przez rezystor R_1 . Zakładamy, że siły elektromotoryczne źródeł napięciowych E_1 , E_2 , E_3 , prąd źródłowy J_1 oraz rezystancje R_1 , R_2 , R_3 , R_4 , R_5 , R_6 są nam znane.

W pierwszym kroku metody Thevenina wyznaczamy napięcie U_{AB} występujące na zaciskach A, B po odłączeniu z obwodu rozwiązywanej gałęzi.

Rys. 10.4. Rozwiązywany obwód

Rys. 10.5. Wyznaczanie napięcia U_{AB} w obwodzie po wyłączeniu rozwiązywanej gałęzi

Dla

$$U_{R2} = -R_2 I_1^{'} \tag{10.26}$$

$$U_{R3} = -R_3 I_1^{'} \tag{10.27}$$

$$U_{R4} = R_4 \left(I_1^{'} - I_2^{'} \right) = R_4 \left(I_1^{'} + J_1 \right), \quad I_2^{'} = -J_1 (10.28)$$

oraz uwzględniając, że $I_1 = -I_1$, ostatecznie otrzymujemy

$$I_1 = \frac{-E_2 + E_3 + R_4 J_1}{R_2 + R_3 + R_4}$$
(10.29)

Następnie wyznaczamy rezystancje R_{AB} widzianą z zacisków A, B po odłączeniu od obwodu gałęzi z rezystorem R_1 (wyznaczając rezystancję R_{AB} zwieramy źródła napięciowe, natomiast gałąź, w której występuje źródło prądowe rozwieramy). Dla wyznaczania rezystancji R_{AB} otrzymujemy obwód z rys. 10.6.

Rys. 10.6. Wyznaczanie rezystancji R_{AB}

Rezystory R_3 i R_4 połączone są szeregowo, natomiast R_2 z R_3 i R_4 równolegle, wobec tego otrzymujemy

 $R_{AB} = \frac{R_2 (R_3 + R_4)}{R_2 + R_3 + R_4} \qquad (10.30)$

Ostatecznie otrzymujemy z metody Thevenina wzór (10.22), prąd I w rozwiązywanej gałęzi

$$I = \frac{U_{AB}}{R_{AB} + R_1}$$
(10.31)

2	4
L	U

Dla rozważanego obwodu napięcie U_{AB} wyraża się wzorem

$$U_{AB} = -E_1 + E_2 + U_{R2} \quad (10.23)$$

gdzie

$$U_{R2} = R_2 I_1 \tag{10.24}$$

Prąd I_1 wyznaczymy metodą oczkową (p. 10.2), układając równanie napięć z II prawa Kirchhoffa dla oczka I (prąd oczkowy I'_1). Równanie napięć przyjmuje postać

$$E_2 - E_3 - U_{R4} + U_{R3} + U_{R2} = 0(10.25)$$

Spadek napięcia na rezystorze R_1 wyraża się wzorem

$$U_{R1} = R_1 I \tag{10.32}$$

10.4. Metoda Nortona

Metoda Nortona podobnie jak metoda Thevenina stosowana jest do wyznaczania prądu w obwodzie elektrycznym tylko w jednej wybranej gałęzi. Polega ona na wyłączeniu z obwodu gałęzi, w której szukamy prądu i zastąpieniu pozostałego obwodu elektrycznego dwójnikiem aktywnym, który stanowi w metodzie Nortona rzeczywiste źródło prądu.

Rys. 10.7. Przekształcenie obwodu zgodnie z metodą Nortona

Wyjaśnienia

- J_0 prąd płynący w bezoporowej gałęzi zwierającej zaciski *A*, *B* po odłączeniu od obwodu rozwiązywanej gałęzi,
- R_0 rezystancja obwodu elektrycznego widziana z zacisków *A*, *B* po odłączeniu od obwodu rozwiązywanej gałęzi (przy wyznaczaniu rezystancji R_0 źródła napięciowe obwodu zwiera się, natomiast w przypadku występowania w gałęzi źródła prądowego, gałąź się rozwiera). Rezystancja R_0 z definicji metody Nortona stanowi rezystancję wewnętrzną źródła prądowego (dwójnika aktywnego).

Prąd rozważanej gałęzi szukany metodą Nortona wyraża się wówczas wzorem

$$I = \frac{R_0}{R_0 + R} J_0$$
(10.33)

Dla przykładu rozpatrzmy obwód elektryczny rys. 10.8, w którym będziemy szukać prądu *I* przepływającego przez rezystor R_3 . Zakładamy, że siły elektromotoryczne źródeł napięciowych E_1 , E_2 , E_3 , prąd źródłowy J_1 oraz rezystancje R_1 , R_2 , R_3 , R_4 , R_5 , R_6 są nam znane.

Rys. 10.8. Rozwiązywany obwód

W pierwszym kroku metody Nortona wyznaczamy prąd źródłowy J_0 płynący w bezoporowej gałęzi zwierającej zaciski A, B po odłączeniu od obwodu rozwiązywanej gałęzi.

Prąd źródłowy J_0 wyznaczymy metodą oczkową (p. 10.2), rys. 10.9.

Rys. 10.9. Wyznaczanie prądu źródłowego J_0 metodą oczkową

Układając równania napięć z II prawa Kirchhoffa dla oczek I, 2, 3 (prądy oczkowe I_1, I_2, I_3) otrzymujemy następujący układ równań

$$\begin{cases} E_2 - E_1 - U_{R1} - U_{R4} + U_{R2} = 0 \\ - E_2 - U_{R2} - E_3 - U_{R5} = 0 \\ E_3 + U_{R4} + U_{R6} + U_x + U_{R5} = 0 \end{cases}$$
(10.34)

Dla

$$U_{R1} = R_1 I_1^{'} \tag{10.35}$$

$$U_{R2} = R_2 \left(-I_1' + I_2' \right) \tag{10.36}$$

$$U_{R4} = R_4 (I_1' - I_3') = R_4 (I_1' + J_1), \quad I_3' = J_1 (10.37)$$

$$U_{R5} = R_5 (I_2 - I_3) = R_5 (I_2 + J_1)$$
(10.38)

$$U_{R6} = -R_6 I_3 = R_6 J_1 \tag{10.39}$$

porządkując względem niewiadomych układ równań (10.34) ostatecznie otrzymujemy

$$\begin{cases} (R_1 + R_2 + R_4)I_1 - R_2I_2 = -E_1 + E_2 - R_4J_1 \\ -R_2I_1 + (R_2 + R_5)I_2 = -E_2 - E_3 - R_5J_1 \\ R_4I_1 + R_5I_2 + U_x = -E_3 - (R_4 + R_5 + R_6)J_1 \end{cases}$$
(10.40)

Rozwiązując układ równań (10.40) otrzymujemy prąd oczkowy $I_2^{'},\,$ który pozwala wyznaczyć szukany prąd źródłowy J_0

$$J_0 = -I_2'$$
 (10.41)

2	Q
~	σ

Następnie wyznaczamy rezystancje R_0 widzianą z zacisków A, B po odłączeniu od obwodu gałęzi z rezystorem R_3 (wyznaczając rezystancję R_0 zwieramy źródła napięciowe, natomiast gałąź, w której występuje źródło prądowe rozwieramy). Dla wyznaczania rezystancji R_0 otrzymujemy obwód z rys. 10.10.

Rezystory R_1 i R_4 połączone są szeregowo, R_1 , R_4 z R_2 równolegle, R_1 , R_4 , R_2 z R_5 szeregowo, wobec tego otrzymujemy

$$R_0 = \frac{R_2(R_1 + R_4)}{R_1 + R_2 + R_4} + R_5 \quad (10.42)$$

Rys. 10.10. Wyznaczanie rezystancji R_0

Ostatecznie dostajemy z metody Nortona wzór (10.33) prąd I w rozwiązywanej gałęzi

$$I = \frac{R_0}{R_0 + R_3} J_0 \tag{10.43}$$

Spadek napięcia na rezystorze R_3 wyraża się wzorem

$$U_{R3} = R_3 I \tag{10.44}$$

10.5. Metoda potencjałów węzłowych

Metoda potencjałów węzłowych polega na ułożeniu n - 1 równań z I prawa Kirchhoffa dla węzłów obwodu, gdzie n - ilość niezależnych węzłów obwodu, przy czym potencjał jednego węzła obwodu narzucamy. Prądy gałęziowe opisujemy przez potencjały węzłów, gdzie wyjątkiem jest występowanie źródła prądowego w gałęzi dopływającej do węzła. Metoda potencjałów węzłowych o tak sformułowanej definicji jest stosowana tylko do obwodów, które można przedstawić przez źródła prądowe.

Dla przykładu rozpatrzmy obwód elektryczny rys. 10.11, w którym znane są wartości sił elektromotorycznych źródeł napięciowych E_1 , E_2 , E_3 , E_4 i wartości rezystancji rezystorów R_1 , R_2 , R_3 , R_4 , R_5 , R_6 . Szukamy prądów gałęziowych I_1 , I_2 , I_3 , I_4 , I_5 , I_6 oraz spadków napięć na rezystorach U_{R1} , U_{R2} , U_{R3} , U_{R4} , U_{R5} , U_{R6} .

Zgodnie z podaną definicją przekształcamy źródła napięciowe E_1 , E_2 , E_3 , E_4 na rzeczywiste źródła prądu (rys. 10.12) J_1 , J_2 , J_3 , J_4 .

$$J_1 = \frac{E_1}{R_3}$$
(10.45)

$$J_2 = \frac{E_2}{R_1}$$
(10.46)

$$J_3 = \frac{E_3}{R_4}$$
(10.47)

$$J_4 = \frac{E_4}{R_6}$$
(10.48)

Dla obwodu otrzymujemy następujące równania z I prawa Kirchhoffa dla węzła *A*, *B*, *C*

$$\begin{cases} J_2 + I_1 + J_1 + I_3 - I_2 = 0 \\ -J_1 - I_3 - I_4 - J_3 - I_5 = 0(10.49) \\ -J_2 - I_1 + I_5 + I_6 + J_4 = 0 \end{cases}$$

Dla prądów gałęziowych przedstawionych przez potencjały węzłów, dla $V_{\scriptscriptstyle D}=0$

$$I_1 = \frac{V_c - V_A}{R_1}$$
(10.50)

$$I_{2}' = \frac{V_{A} - V_{D}}{R_{2}} = \frac{V_{A}}{R_{2}}$$
(10.51)

$$I_{3} = \frac{V_{B} - V_{A}}{R_{3}}$$
(10.52)

$$I_{4} = \frac{V_{B} - V_{D}}{R_{4}} = \frac{V_{B}}{R_{4}}$$
(10.53)

$$I_{5} = \frac{V_{B} - V_{C}}{R_{5}}$$
(10.54)

$$I_{6} = \frac{V_{D} - V_{C}}{R_{6}} = -\frac{V_{C}}{R_{6}}$$
(10.55)

po przekształceniu układu równań (10.49) względem szukanych potencjałów V_A , V_B , V_C , otrzymujemy

$$\begin{cases} \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}\right) V_{A} - \frac{1}{R_{3}} V_{B} - \frac{1}{R_{1}} V_{C} = J_{1} + J_{2} \\ -\frac{1}{R_{3}} V_{A} + \left(\frac{1}{R_{3}} + \frac{1}{R_{4}} + \frac{1}{R_{5}}\right) V_{B} - \frac{1}{R_{5}} V_{C} = -J_{1} - J_{3} \\ -\frac{1}{R_{1}} V_{A} - \frac{1}{R_{5}} V_{B} + \left(\frac{1}{R_{1}} + \frac{1}{R_{5}} + \frac{1}{R_{6}}\right) V_{C} = -J_{2} + J_{4} \end{cases}$$
(10.56)

Z II prawa Kirchhoffa dla obwodu z rys. 10.11 możemy napisać

$$U_{AC} + U_{R1} - E_2 = 0 \tag{10.57}$$

gdzie $U_{AC} = V_A - V_C$, $U_{R1} = R_1 I_1$.

Wówczas otrzymujemy równanie, z którego możemy wyznaczyć prąd gałęziowy I_1

$$I_1 = \frac{-V_A + V_C + E_2}{R_1} \tag{10.58}$$

Analogicznie otrzymujemy zależności na pozostałe prądy gałęziowe, tzn. $I_2,\,I_3,\,I_4,\,I_5,\,I_6$

$$I_2 = \frac{-V_A}{R_2}$$
(10.59)

$$I_3 = \frac{V_A - V_B - E_1}{R_3} \tag{10.60}$$

$$I_4 = \frac{V_B + E_3}{R_4} \tag{10.61}$$

$$I_{5} = \frac{V_{B} - V_{C}}{R_{5}}$$
(10.62)

$$I_6 = \frac{-V_C + E_4}{R_6} \tag{10.63}$$

Spadki napięcia na rezystorach obwodu R_1 , R_2 , R_3 , R_4 , R_5 , R_6 wyrażają się wzorami

$$U_{R1} = R_1 I_1 \tag{10.64}$$

$$U_{R2} = R_2 I_2 \tag{10.65}$$

$$U_{R3} = R_3 I_3 \tag{10.66}$$

$$U_{R4} = R_4 I_4 \tag{10.67}$$

$$U_{R5} = R_5 I_5 \tag{10.68}$$

$$U_{R6} = R_6 I_6 \tag{10.69}$$

11. NAPIĘCIA I PRĄDY SINUSOIDALNE

11.1. Napięcia i prądy sinusoidalne jednofazowe

Napięcia i prądy sinusoidalne opisują równania

$$u = U_m \sin(\omega t + \varphi_u) \tag{11.1}$$

$$i = I_m \sin(\omega t + \varphi_i) \tag{11.2}$$

gdzie u, i – wartości chwilowe napięcia i prądu, U_m – wartość maksymalna amplitudy napięcia, I_m – wartość maksymalna amplitudy prądu, ω – pulsacja albo tzw. częstotliwość kątowa, φ_u – przesunięcie fazowe przebiegu napięcia, φ_i – przesunięcie fazowe przebiegu prądu.

Pulsacja wyraża się wzorem

$$\omega = 2\pi f, \quad \omega = \frac{2\pi}{T}, \quad f = \frac{1}{T} \tag{11.3}$$

gdzie f – częstotliwość przebiegu, T – okres przebiegu.

Pulsację mierzymy w radianach na sekundę. Wymiarem pulsacji jest s⁻¹.

Przesunięciem fazowym przebiegu napięcia i prądu nazywamy różnicę pomiędzy kątem przesunięcia przebiegu napięcia a kątem przesunięcia przebiegu prądu

$$\varphi = \varphi_u - \varphi_i \tag{11.4}$$

Na rys. 11.1 przedstawiono przebiegi czasowe napięcia i prądu sinusoidalnego sieciowego dla $U_m = \sqrt{2} 220$ V, $I_m = \sqrt{2} 100$ A, f = 50 Hz, $\varphi_u = 0$, $\varphi_i = -45^\circ$, $(\phi_i = -\pi/4)$, kąt przesunięcia fazowego pomiędzy przebiegiem napięcia a przebiegiem prądu wynosi $\varphi = 45^\circ$ lub przesunięcie w czasie o t = T/8, gdzie przebieg napięcia wyprzedza przebieg prądu.

Na rys. 11.2 przedstawiono wykres wskazowy napięcia i prądu dla wartości skutecznych dla rozważanego przypadku.

Rys. 11.2. Wykres wskazowy napięcia i prądu dla wartości skutecznych

Wartościami charakterystycznymi dla przebiegu sinusoidalnego napięcia i prądu jest wartość skuteczna oraz wartość średnia.

Wartością skuteczną przebiegu okresowego, jakim jest przebieg sinusoidalny, nazywamy taką wartość równoważnego prądu stałego, który by w takim samym czasie, równym jednemu okresowi, wydzielił w tym samym rezystorze taką samą ilość ciepła.

Wartość skuteczna dla przebiegu okresowego liczona jest według wzoru

$$A = \sqrt{\frac{1}{T} \int_{0}^{T} f^{2}(t) dt}$$
(11.5)

Wartością średnią przebiegu okresowego nazywamy wartość średnią tego przebiegu za okres.

Wartość średnia dla przebiegu okresowego liczona jest według wzoru

$$A = \frac{1}{T} \int_{0}^{T} f(t) dt$$
 (11.6)

Dla przebiegów sinusoidalnych napięcia i prądu wartości skuteczne mają wartość

$$U = \frac{U_m}{\sqrt{2}}, \quad I = \frac{I_m}{\sqrt{2}}$$
 (11.7)

a wartości średnie

$$U = 0,636U_m, \quad I = 0,636I_m \tag{11.8}$$

Często w analizie obwodów elektrycznych dla napięć i prądów sinusoidalnych stosuje się zapis w postaci zespolonej. Stosujemy wówczas następujące przekształcenie

$$\underline{U} = \frac{U_m}{\sqrt{2}} e^{j\varphi_u} = \frac{U_m}{\sqrt{2}} (\cos\varphi_u + j\sin\varphi_u)$$
(11.9)

$$\underline{I} = \frac{I_m}{\sqrt{2}} e^{j\varphi_i} = \frac{I_m}{\sqrt{2}} \left(\cos\varphi_i + j\sin\varphi_i\right)$$
(11.10)

11.2. Napięcia sinusoidalne trójfazowe, układ zgodny symetryczny

We współczesnej energetyce występują przebiegi napięcia i prądu sinusoidalnego trójfazowego. Energia elektryczna powstaje w generatorach prądotwórczych. Na rys. 11.3 przedstawiono przebiegi napięć sinusoidalnych trójfazowych układu zgodnego symetrycznego, przesuniętych względem siebie o kąt $\alpha = 120^{\circ}$ lub czas t = T/3. Napięcie u_A wyprzedza napięcie u_B , natomiast napięcie u_B wyprzedza napięcie u_C . Wartości maksymalne napięć w układzie symetrycznym są sobie równe tzn. $U_{Am} = U_{Bm} = U_{Cm}$.

$$u_A = U_{Am} \sin(\omega t + \varphi_u) \tag{11.11}$$

$$u_{B} = U_{Bm} \sin\left(\omega t + \phi_{u} - \frac{2\pi}{3}\right)$$
(11.12)

$$u_{c} = U_{cm} \sin\left(\omega t + \phi_{u} - \frac{4\pi}{3}\right)$$
(11.13)

Rys. 11.3. Przebieg w czasie sieciowego napięcia sinusoidalnego trójfazowego, $U_{Am} = U_{Bm} = U_{Cm} = \sqrt{2} \ 220 \text{ V}, \ \varphi_u = 0, \ f = 50 \text{ Hz}$

W dowolnej chwili *t* suma napięć chwilowych trzech faz przebiegów sinusoidalnych wynosi zero

$$u_{A}(t) + u_{B}(t) + u_{C}(t) = 0$$
(11.14)

Dla układu trójfazowego wprowadza się wykres wskazowy wartości skutecznych napięć, rys. 11.4.

Z wykresu wskazowego można zauważyć, że wartości napięcia międzyfazowego U_{AB} , U_{BC} , U_{CA} są $\sqrt{3}$ razy większe od wartości fazowych U_A , U_B , U_C oraz, że wektory napięć międzyfazowych wyprzedzają w czasie o kąt $\beta = 30^\circ$ wektory napięć fazowych.

Napięcia międzyfazowe opisują wzory

$$u_{AB} = \sqrt{3}U_{Am}\sin(\omega t + \varphi_u + 30^\circ)$$
(11.15)

$$u_{BC} = \sqrt{3}U_{Bm} \sin\left(\omega t + \phi_{u} - \frac{2\pi}{3} + 30^{\circ}\right)$$
(11.16)

$$u_{CA} = \sqrt{3}U_{Cm} \sin\left(\omega t + \phi_u - \frac{4\pi}{3} + 30^\circ\right)$$
(11.17)

12. ELEMENTY IDEALNE *R*, *L*, *C* ZASILANE NAPIĘCIEM SINUSOIDALNYM

Przy analizie elementów idealnych zasilanych napięciem sinusoidalnym będziemy rozpatrywać opóźnienia czasowe występujące pomiędzy przebiegami napięć i przebiegami prądów. Podane zostaną wielkości charakteryzujące elementy pod kątem przewodności prądu mianowicie rzeczywiste (rezystancja) i urojone (reaktancja).

12.1. Rezystor idealny R zasilany napięciem sinusoidalnym

Przy zasilaniu idealnego rezystora R napięciem sinusoidalnym u, (rys. 12.1)

Rys. 12.1. Rezystor idealny *R* zasilany napięciem sinusoidalnym

gdzie
$$U_m = \sqrt{2}U$$
, U – wartość skuteczna
napięcia, przebieg napięcia na rezystorze
jest w fazie z przebiegiem prądu,
czyli przesunięcie fazowe $\varphi = 0$.

$$0 \xrightarrow{I \quad U}$$

Rys. 12.3. Wykres wskazowy wartości skutecznych napięcia i prądu na rezystorze dla napięcia zasilania U = 220 V i $R = 2 \Omega$

Prąd chwilowy będzie odpowiadał

$$i = I_m \sin(\omega t + \varphi_u) \tag{12.2}$$

gdzie

$$I_m = \frac{U_m}{R} \tag{12.3}$$

Rozpatrując wartości skuteczne napięcia i prądu na rezystorze, czyli dzieląc amplitudę przebiegów przez $\sqrt{2}$, otrzymujemy

,

、

$$I = \frac{U}{R} \tag{12.4}$$

Reasumując, idealny rezystor zasilany napięciem sinusoidalnym, charakteryzuje się tylko rezystancją R, bowiem jego reaktancja X jest równa zero

$$R \neq 0, \quad X = 0$$
 (12.5)

12.2. Cewka idealna L zasilana napięciem sinusoidalnym

Przy zasilaniu idealnej cewki L napięciem sinusoidalnym u, (rys. 12.4)

$$u = U_m \sin(\omega t + \varphi_u)$$
(12.6)

przebieg napięcia na cewce wyprzedza przebieg prądu o kąt 90°, czyli przesunięcie fazowe $\varphi = 90^\circ$.

Prąd chwilowy będzie odpowiadał

$$i = I_m \sin\left(\omega t + \varphi_u - 90^\circ\right) \tag{12.7}$$

gdzie

$$I_m = \frac{U_m}{X_L} \tag{12.8}$$

Rys. 12.4. Cewka idealna *L* zasilana napięciem sinusoidalnym

Wielkość X_L jest reaktancją indukcyjną (oporem indukcyjnym dla prądu).

Reaktancja indukcyjna jest równa iloczynowi pulsacji ω i indukcyjności L cewki

$$X_L = \omega L \implies X_L = 2\pi f L, \quad \omega = 2\pi f$$
 (12.9)

Jednostką reaktancji indukcyjnej X_L jest om (Ω).

Rozpatrując wartości skuteczne napięcia i prądu na cewce, czyli dzieląc amplitudę przebiegów przez $\sqrt{2}$, otrzymujemy

$$I = \frac{U}{X_L} \tag{12.10}$$

Reasumując, idealna cewka zasilana napięciem sinusoidalnym charakteryzuje się tylko reaktancją indukcyjną X_L , bowiem jej rezystancja *R* jest równa zero

$$X_L \neq 0, R = 0$$
 (12.11)

Rys. 12.7. Zależność reaktancji indukcyjnej cewki $X_L = f(f)$ o indukcyjności L = 5 mH od częstotliwości

12.3. Kondensator idealny C zasilany napięciem sinusoidalnym

Przy zasilaniu idealnego kondensatora C napięciem sinusoidalnym u, (rys. 12.8)

$$u = U_m \sin(\omega t + \varphi_u) \qquad (12.12)$$

Rys. 12.8. Kondensator idealny *C* zasilany napięciem sinusoidalnym

przebieg napięcia na kondensatorze opóźnia się względem przebiegu prądu o kąt 90°, czyli przesunięcie fazowe wynosi $\varphi = -90^\circ$.

Rys. 12.9. Przebieg czasowy napięcia i prądu na kodensatorze dla napięcia zasilania U = 220 V, f = 15 kHz i $C = 5 \mu$ F Rys. 12.10. Wykres wskazowy wartości skutecznych napięcia i prądu na kondensatorze dla napięcia zasilania U = 220 V, f = 15 kHz i $C = 5 \mu$ F

Prąd chwilowy będzie odpowiadał

$$i = I_m \sin(\omega t + \varphi_u + 90^\circ)$$
(12.13)

gdzie

$$I_m = \frac{U_m}{X_C} \tag{12.14}$$

Wielkość X_C jest reaktancją pojemnościową (oporem pojemnościowym dla prądu).

Reaktancja pojemnościowa kondensatora jest odwrotnie proporcjonalna do iloczynu pulsacji ω i pojemności C

$$X_c = \frac{1}{\omega C} \implies X_c = \frac{1}{2\pi f C}, \quad \omega = 2\pi f$$
 (12.15)

Jednostką reaktancji pojemnościowej X_C jest om (Ω).

Rys. 12.11. Zaležność reaktancji pojemnościowej $X_c = f(f)$ kondensatora o pojemności $C = 5 \ \mu F$ od częstotliwości

Rozpatrując wartości skuteczne napięcia i prądu na kondensatorze, czyli dzieląc amplitudę przebiegów przez $\sqrt{2}$, otrzymujemy

$$I = \frac{U}{X_c} \tag{12.16}$$

Reasumując, idealny kondensator zasilany prądem sinusoidalnym charakteryzuje się tylko reaktancją pojemnościową X_C , bowiem jego rezystancja R jest nieskończenie wielka

$$X_c \neq 0, \ R \rightarrow \infty$$
 (12.17)

13. OBWÓD SZEREGOWY *RLC*, REZONANS NAPIĘĆ I TRÓJKĄT IMPEDANCJI

Rozważmy obwód szeregowy *RLC* zasilany napięciem sinusoidalnym u, (rys. 13.1)

$$u = U_m \sin(\omega t + \varphi_u) \tag{13.1}$$

gdzie $U_m = \sqrt{2} U$, U – wartość skuteczna napięcia.

$$i \stackrel{R}{\longleftarrow} \stackrel{L}{\underbrace{u_{R}}} \stackrel{C}{\underbrace{u_{L}}} \stackrel{i}{\underbrace{u_{C}}} \stackrel{i}{\longleftarrow} \stackrel{Z}{\underbrace{u_{R}}} Rys. 13.1. Obwód szeregowy RLC$$

Zgodnie z teorią podaną w rozdziale 12, prąd *i* płynący w obwodzie szeregowym wywołuje spadek napięcia na rezystorze *R*, przebieg prądu i napięcia na rezystorze jest zgodny w fazie, prąd *i* wywołuje spadek napięcia na cewce *L*, przebieg prądu opóźniony jest względem przebiegu napięcia na cewce o kąt 90°, oraz prąd *i* wywołuje spadek napięcia na kondensatorze *C*, przebieg prądu wyprzedza przebieg napięcia na kondensatorze o kąt 90°. Dla układu z rys. 13.1 możemy narysować wykres wskazowy napięcia i prądu, rys. 13.2

Rys. 13.2. Wykres wskazowy napięcia i prądu w obwodzie szeregowym *RLC* dla wartości skutecznych

Po podaniu napięcia sinusoidalnego na obwód *RLC* popłynie prąd o wartości skutecznej

$$I = \frac{U}{Z} \tag{13.2}$$

gdzie Z - impedancja obwodu szeregowego RLC, która wyraża się wzorem

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
(13.3)

Jednostką impedancji jest om (Ω).

Wzór na impedancję (13.3) wynika z trójkąta impedancji, który jest podobny do trójkąta napięć wykresu wskazowego i powstaje on przez podzielenie wskazów napięcia przez prąd *I*.

Kąt φ jest przesunięciem fazowym pomiędzy przebiegiem napięcia zasilającego a przebiegiem prądu w obwodzie szeregowym *RLC*. Wyraża się wzorem

$$\varphi = \begin{cases} \arccos\left(\frac{R}{Z}\right) \ dla \quad X_L > X_C \\ -\arccos\left(\frac{R}{Z}\right) \ dla \quad X_L < X_C \end{cases}$$
(13.4)

Napięcie skuteczne na rezystorze R, cewce L oraz kondensatorze C opisane są wzorami

$$U_R = RI \tag{13.5}$$

$$U_{I} = X_{I}I \tag{13.6}$$

$$U_c = X_c I \tag{13.7}$$

Często przy analizie obwodów elektrycznych napięć i prądów sinusoidalnych stosuję się metodą liczb zespolonych. Przedstawia się wówczas przebiegi napięcia źródeł zasilających w postaci zespolonej

$$\underline{U} = A + \mathbf{j}\mathbf{B} \tag{13.8}$$

lub

$$\underline{U} = Ue^{j\varphi} = U(\cos\varphi + j\sin\varphi)$$
(13.9)

gdzie A, B – stałe źródła, część rzeczywista i urojona, φ – wyraża się wzorem analogicznym do równania (13.4).

W podobny sposób przedstawia się przebiegi prądów w obwodzie i jego impedancje.

Przy rozpatrywaniu obwodu szeregowego *RLC* dla wartości chwilowych, przy sinusoidalnym napięciu zasilania, równanie (13.1), otrzymamy prąd w obwodzie

$$i = I_m \sin(\omega t + \varphi_u - \varphi), \quad I_m = \frac{U_m}{Z}$$
(13.10)

gdzie φ dane jest wzorem (13.4).

Napięcie na rezystorze R będzie w fazie z prądem obwodu

$$u_R = RI_m \sin(\omega t + \varphi_u - \varphi) \tag{13.11}$$

natomiast na cewce będzie przyśpieszone a na kondensatorze opóźnione o kat 90°

$$u_L = X_L I_m \sin(\omega t + \varphi_u - \varphi + 90^\circ)$$
(13.12)

$$u_c = X_c I_m \sin(\omega t + \varphi_u - \varphi - 90^\circ)$$
(13.13)

Na rys. 13.4 przedstawiono wykres wskazowy napięć i prądu, natomiast na rys. 13.5 przebiegi czasowe napięć i prądu w obwodzie szeregowym *RLC* dla U = 220 V, $\varphi_u = 0$, f = 600 Hz, $R = 4 \Omega$, L = 1,2 mH, $C = 100 \mu$ F.

Rys. 13.4. Wykres wskazowy napięcia i prądu w obwodzie szeregowym *RLC* dla wartości skutecznych dla U = 220 V, f = 600 Hz, $R = 4 \Omega$, L = 1,2 mH, $C = 100 \mu$ F

Rys. 13.5. Przebieg czasowy napięć i prądu w obwodzie szeregowym *RLC* dla U = 220 V, $\varphi_u = 0$, f = 600 Hz, $R = 4 \Omega$, L = 1,2 mH, $C = 100 \mu$ F

Po obliczeniach obwodu szeregowego *RLC* dla U = 220 V, $\varphi_u = 0$, f = 600 Hz, $R = 4 \Omega$, L = 1,2 mH, $C = 100 \mu$ F otrzymano następujące wyniki obliczeń, wartość skuteczna napięcia na rezystorze $U_R = 199,2$ V, wartość skuteczna napięcia na cewce $U_L = 225,3$ V, wartość skuteczna napięcia na kondensatorze $U_C = 132,1$ V, wartość skuteczna prądu w obwodzie I = 49,8 A, przesunięcie fazowe pomiędzy przebiegiem napięcia zasilającego a przebiegiem prądu obwodu wynosi $\varphi = 25,07^{\circ}$.

Jeżeli reaktancja indukcyjna równa jest reaktancji pojemnościowej w obwodzie szeregowym *RLC*, tzn. $X_L = X_C$, dochodzi do rezonansu napięć. Spadek napięcia na cewce *L* równa się spadkowi napięcia na kondensatorze *C*, tzn. $U_L = U_C$ z tą różnicą, że napięcia są odwrócone w fazie o kąt 180°. W przypadku rezonansu napięć może dochodzić do przepięć na elementach obwodu.

Do rezonansu napięć można doprowadzić na trzy sposoby

1. Przez dobór indukcyjności

$$X_{L} = X_{C} \implies 2\pi f L = \frac{1}{2\pi f C} \implies L = \frac{1}{4\pi^{2} f^{2} C}$$
(13.14)

2. Przez dobór pojemności

$$C = \frac{1}{4\pi^2 f^2 L}$$
(13.15)

3. Przez dobór częstotliwości napięcia zasilania

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \tag{13.16}$$

4	2
-	-

W stanie rezonansu obwodu impedancja obwodu równa jest rezystancji $\underline{Z} = R$, a prąd ogranicza tylko rezystancja

Rys. 13.6. Zależność prądu w obwodzie szeregowym *RLC* w zależności od częstotliwości I = f(f) dla różnych wartości rezystancji, wartości skuteczne dla U = 220 V, $R_1 = 3 \Omega$, $R_2 = 5 \Omega$, $R_3 = 10 \Omega$

Na rys. 13.7 przedstawiono przebiegi czasowe napięć i prądu, natomiast na rys. 13.8 wykres wskazowy napięć i prądu w obwodzie szeregowym *RLC* w stanie rezonansu napięć dla U = 220 V, $\varphi_u = 0$, $f_0 = 1000$ Hz, $R = 10 \Omega$, L = 5 mH, $C \approx 5.07 \mu$ F.

Rys. 13.7. Przebieg czasowy napięć i prądu w obwodzie szeregowym *RLC* w stanie rezonansu dla U = 220 V, $\varphi_u = 0$, $f_0 = 1000$ Hz, $R = 10 \Omega$, L = 5 mH, $C \approx 5,07 \,\mu\text{F}$

Rys. 13.8. Wykres wskazowy napięcia i prądu w obwodzie szeregowym *RLC* w stanie rezonansu dla U = 220 V, $f_0 = 1000$ Hz, $R = 10 \Omega$, L = 5 mH, $C \approx 5,07 \mu$ F

Po obliczeniach obwodu szeregowego *RLC* w stanie rezonansu dla U = 220 V, $f_0 = 1000$ Hz, $R = 10 \Omega$, L = 5 mH, $C \approx 5,07 \mu$ F otrzymano następujące wyniki obliczeń, wartość skuteczna napięcia na rezystorze $U_R = U$, wartość skuteczna napięcia na cewce i kondensatorze $U_L = U_C = 691,1$ V, wartość skuteczna prądu w obwodzie I = 22 A, kąt przesunięcia fazowego pomiędzy przebiegiem napięcia zasilającego a przebiegiem prądu obwodu wynosi $\varphi = 0$, czyli przebieg napięcia zasilającego w stanie rezonansu napięć jest w fazie z przebiegiem prądu w obwodzie.

14. OBWÓD RÓWNOLEGŁY *RLC*, REZONANS PRĄDÓW I TRÓJKĄT ADMITANCJI

Rozważmy obwód równoległy RLC zasilany napięciem sinusoidalnym u, (rys.14.1)

Rys. 14.1. Obwód równoległy RLC

gdzie $U_m = \sqrt{2} U$, U – wartość skuteczna napięcia.

Zgodnie z teorią podaną w rozdziale 12, pod wpływem przyłożonego napięcia u w obwodzie równoległym popłynie prąd i_R w gałęzi z rezystorem R, prąd i_R jest w fazie z napięciem zasilającym u, w gałęzi z cewką L popłynie prąd i_L , prąd i_L opóźniony jest o kąt 90° względem napięcia zasilającego u, oraz w gałęzi z kondensatorem C popłynie prąd i_C , który wyprzedza o kąt 90° napięcie zasilania u.

Dla układu z rys. 14.1 możemy narysować wykres wskazowy napięcia i prądu

Po podaniu napięcia sinusoidalnego na obwód równoległy *RLC* w gałęzi rezystora *R* popłynie prąd o wartości skutecznej

$$I_{R} = \frac{U}{R} = GU$$
, $G = \frac{1}{R}$ (14.2)

gdzie G – konduktancja, której jednostką jest simens (S).

Rys. 14.2. Wykres wskazowy napięcia i prądu obwodu równoległego *RLC* dla wartości skutecznych

W gałęzi cewki L i kondensatora C prąd będzie wynosić odpowiednio

$$I_{L} = \frac{U}{X_{L}} = B_{L}U, \quad B_{L} = \frac{1}{X_{L}}$$
(14.3)

$$I_{c} = \frac{U}{X_{c}} = B_{c}U, \quad B_{c} = \frac{1}{X_{c}}$$
(14.4)

gdzie B_L oraz B_C – susceptancja indukcyjna i pojemnościowa. Jednostką susceptancji w układzie SI jest simens (S).

Prąd wypadkowy obwodu *I* możemy wyznaczyć z trójkąta prostokątnego powstałego ze wskazów wektorów prądu, rys. 14.2

$$I^{2} = I_{R}^{2} + (I_{L} - I_{C})^{2} \implies I = \sqrt{I_{R}^{2} + (I_{L} - I_{C})^{2}}$$
(14.5)

lub korzystając z wielkości admitancji obwodu Y

$$I = YU \tag{14.6}$$

gdzie admitancja Y wyraża się wzorem

$$Y = \sqrt{G^2 + (S_L - S_C)^2}$$
(14.7)

lub gdy znana jest impedancja obwodu równoległego RLC

$$Y = \frac{1}{Z} \tag{14.8}$$

Jednostką admitancji podobnie jak w przypadku sussceptancji jest simens (S). Wzór na admitancję (14.7) wynika z trójkąta admitancji, który jest podobny do trójkąta prądów wykresu wskazowego i powstaje on przez podzielenie wskazów prądu przez napięcie U.

$$\frac{I_R}{U} = \frac{1}{R} = G$$

$$\frac{I}{U} = \frac{1}{Z} = Y$$

$$\frac{(I_L - I_C)}{U} = \frac{1}{X_L - X_C} = B_L - B_C = B$$
Rys. 14.3. Trójkąt admitancji obwodu równole-
głego *RLC* powstały z trójkąta prądów wykresu
wskazowego

Kąt φ jest przesunięciem fazowym pomiędzy przebiegiem napięcia zasilającego u a przebiegiem prądu obwodu równoległego *RLC*. Wyraża się wzorem

$$\varphi = \begin{cases} \arccos\left(\frac{G}{Y}\right) & \text{dla } B_L > B_C \\ -\arccos\left(\frac{G}{Y}\right) & \text{dla } B_L < B_C \end{cases}$$
(14.9)

/	1	5
-	t	5

Często przy analizie obwodów elektrycznych stosuję się metodą liczb zespolonych. Przedstawia się wówczas napięcie zasilające w postaci zespolonej

$$\underline{U} = A + jB \quad \text{lub} \quad \underline{U} = U(\cos\varphi + j\sin\varphi) \qquad (14.10, 14.11)$$

gdzie A, B – stałe źródła, część rzeczywista i urojona, φ – wyraża się wzorem analogicznym do równania (14.9).

W podobny sposób przedstawia się przebiegi prądów w obwodzie i jego admitancję.

Przy rozpatrywaniu gałęzi równoległej *RLC* dla wartości chwilowych, przy sinusoidalnym napięciu zasilania równanie (14.1), otrzymujemy następujące równanie prądu na rezystorze

$$i_{R} = I_{Rm} \sin(\omega t + \varphi_{u}), \quad I_{Rm} = U_{m}G$$
(14.12)

na cewce i kondensatorze

$$i_{L} = I_{Lm} \sin(\omega t + \varphi_{u} - 90^{\circ}), \quad I_{Lm} = U_{m}B_{L}$$
 (14.13)

$$i_{c} = I_{cm} \sin(\omega t + \varphi_{u} + 90^{\circ}), \quad I_{cm} = U_{m}B_{c}$$
 (14.14)

oraz prąd wypadkowy obwodu

$$i = I_m \sin(\omega t + \varphi_u - \varphi), \quad I_m = U_m Y$$
(14.15)

gdzie φ dane jest wzorem (14.9).

Napięcie na rezystorze R, cewce L oraz kondensatorze C w obwodzie równoległym jest równe napięciu zasilania u.

Na rys. 14.14 przedstawiono przebiegi czasowe napięć i prądu, natomiast na rys. 14.15 wykres wskazowy napięć i prądu w obwodzie równoległym *RLC* dla U = 220 V, $\varphi_u = 0$, f = 500 Hz, $R = 2 \Omega$, L = 1 mH, $C = 330 \mu$ F.

Po obliczeniach obwodu równoległego *RLC* dla U = 220 V, $\varphi_u = 0$, f = 500 Hz, $R = 2 \Omega$, L = 1 mH, $C = 330 \mu$ F otrzymano następujące wyniki obliczeń, wartość skuteczna prądu na rezystorze $I_R = 110$ A, wartość skuteczna prądu na cewce $I_L = 70$ A, wartość skuteczna prądu na kondensatorze $I_C = 228$ A, wartość skuteczna prądu w obwodzie I = 192,5 A, kąt przesunięcia fazowego pomiędzy przebiegiem napięcia zasilającego a przebiegiem prądu obwodu wynosi $\varphi = -55,1^{\circ}$.

Jeżeli susceptancja indukcyjna równa jest susceptancji pojemnościowej w obwodzie równoległym *RLC*, tzn. $B_L = B_C$, dochodzi do rezonansu prądów. Prąd płynący przez cewkę *L* równa się prądowi przepływającemu przez kondensator *C*, tzn. $I_L = I_C$ z tą różnicą, że prądy są odwrócone w fazie o kąt 180°.

Do rezonansu prądów można doprowadzić na trzy sposoby

1. Przez dobór indukcyjności

$$B_L = B_C \implies \frac{1}{2\pi fL} = 2\pi fC \implies L = \frac{1}{4\pi^2 f^2 C}$$
(14.16)

2. Przez dobór pojemności

$$C = \frac{1}{4\pi^2 f^2 L}$$
(14.17)

3. Przez dobór częstotliwości napięcia zasilania

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \tag{14.18}$$

W stanie rezonansu admitancja obwodu równa jest konduktancji $\underline{Y} = G$, czyli prąd wyznacza konduktancja wyrażona przez rezystancję rezystora *R*

$$I = UG, G = 1/R$$
 (14.19)

Na rys. 14.16a,b przedstawiono zależności prądu w obwodzie równoległym *RLC* od częstotliwości I = f(f) dla różnych wartości rezystancji. Wartość skuteczna napięcia zasilania obwodu wynosi U = 220 V, $R_1 = 50 \Omega$

 $(G_1 = 0.02 \text{ S}), R_2 = 100 \Omega$ $(G_2 = 0.01 \text{ S}), R_3 = 150 \Omega$ $(G_3 = 0.006 \text{ S}), L = 1 \text{ mH}, C \approx 6.33 \mu\text{F}, \text{ częstotliwość rezonansowa obwodu } f_0 = 2000 \text{ Hz}.$

Na rys. 14.17 przedstawiono przebiegi czasowe napięć i prądu, natomiast na rys. 14.18 wykres wskazowy napięć i prądu w obwodzie równoległym *RLC* w stanie rezonansu prądów dla U = 220 V, $\varphi_u = 0$, $f_0 = 400$ Hz, $R = 1,5 \Omega$, L = 1 mH, $C \approx 158 \mu$ F.

Rys. 14.17. Przebieg czasowy napięć i prądu w obwodzie równoległym *RLC* w stanie rezonansu dla wartości skutecznych dla

 $U = 220 \text{ V}, \ \varphi_u = 0, \ f_0 = 400 \text{ Hz}, R = 1,5 \Omega, L = 1 \text{ mH}, \ C \approx 158 \mu\text{F}$

Rys. 14.18. Wykres wskazowy napięcia i prądu w obwodzie równoległym *RLC* w stanie rezonansu dla wartości skutecznych dla U = 220 V,

$$f_0 = 400$$
 Hz, $R = 1.5 \Omega$, $L = 1$ mH,
 $C \approx 158 \mu F$

Po obliczeniach obwodu równoległego *RLC* w stanie rezonansu dla U = 220 V, $f_0 = 400 \text{ Hz}$, $R = 1,5 \Omega$, L = 1 mH, $C \approx 158 \mu\text{F}$ otrzymano następujące wyniki obliczeń, wartość skuteczna prądu w gałęzi rezystora i zarazem prąd wypadkowy przepływający przez obwód równoległy *RLC* wynosi $I_R = I = 146,6 \text{ A}$, wartość skuteczna prądu w gałęzi cewki $I_L = 87,5 \text{ A}$, wartość skuteczna prądu w gałęzi cewki $I_L = 87,5 \text{ A}$, wartość skuteczna prądu w gałęzi cewki $I_C = 87,5 \text{ A}$, przebieg napięcia zasilającego w stanie rezonansu jest w fazie z przebiegiem prądu, czyli $\varphi = 0$.

15. MOC ODBIORNIKA JEDNOFAZOWEGO I TRÓJFAZOWEGO

15.1. Moc odbiornika jednofazowego, trójkąt mocy

Dla wygody, dla odbiorników rezystancyjno – reaktancyjnych zasilanych napięciem sinusoidalnym, wprowadza się trójkąt mocy podobny do trójkąta napięć czy impedancji. Powstaje on przez przemnożenie trójkąta napięć dla wykresu wskazowego gałęzi *RLC* przez prąd *I*. Trójkąt mocy ilustruje pobór mocy przez odbiornik rezystancyjno – reaktancyjny.

Każdy odbiornik rezystancyjno – reaktancyjny można przedstawić jako impedancje Z złożoną z szeregowego połączenia rezystora R i elementu reaktancyjnego X.

$$Z(R, X_L, X_C, \varphi)$$

Rys. 15.1. Odbiornik o impedancji Z zasilany napięciem sinusoidalnym

jaki będzie przepływał prąd.

Wyróżniamy trzy rodzaje mocy

 Moc pozorną S = UI, której jednostką jest woltoamper (V·A). Moc pozorna jest sumą geometryczną mocy czynnej P oraz mocy biernej Q. Mówi nam, jakie obciążenie mocy dla źródła energii stanowi odbiornik, między innymi

- 2. Moc czynna $P = UI \cos(\varphi)$, której jednostką jest wat (W). Moc czynna mówi, ile energii w odbiorniku zostanie przetworzone na inny rodzaj energii, np. ciepło, moc mechaniczną. Moc czynna odbiornika zawiera moc czynną odbiornika użyteczną oraz moc czynną odbiornika strat, np. straty mocy w przewodach.
- 3. Moc bierna $Q = UI \sin(\varphi)$, której jednostką jest war (Var). Moc bierna określa moc potrzebną do wytworzenia pola magnetycznego lub elektrycznego w obwodzie i wiąże się z przenikalnością magnetyczną μ lub

elektryczną ε ośrodka w zależności od charakteru reaktancyjnego obwodu, magnetycznego lub pojemnościowego. Moc bierna nie jest przetwarzana na inny rodzaj energii, lecz krąży w obwodzie. Niestety wymusza większy pobór mocy pozornej, zatem większy prąd co pociąga za sobą większe straty mocy czynnej np. w przewodach przewodzących prąd. Dlatego też tam gdzie jest to wskazane, na przykład w energetyce, dąży się do kompensacji mocy biernej.

Współczynnik $cos(\phi)$ nazywamy współczynnikiem mocy odbiornika. Określa on stosunek pobieranej mocy czynnej *P* do mocy pozornej *S*.

W energetyce przy kompensacji mocy biernej Q pobieranej przez odbiorniki rezystancyjno – reaktancyjne, dąży się by $\cos(\varphi)$ był bliski jedności. Wówczas moc bierna Q zanika i nie dochodzi do groźnych w sieci rezonansów napięć i prądów. Niekiedy przy analizie obwodów prądu sinusoidalnego metodą liczb zespolonych wprowadza się moc pozorną zespoloną wyrażoną wzorem

$$\underline{S} = \underline{U} \cdot \underline{I}^* \tag{15.1}$$

gdzie <u>U</u> – zespolona wartość napięcia, \underline{I}^* – zespolona sprzężona wartość prądu. Wówczas moc czynna *P* oraz moc bierna *Q* wyrażają się wzorami

$$P = \operatorname{Re}(\underline{S}) \tag{15.2}$$

$$Q = \operatorname{Im}(\underline{S}) \tag{15.3}$$

14.2. Moc odbiornika trójfazowego

Moc odbiornika trójfazowego symetrycznego, to znaczy w którym spełniony jest warunek $\underline{Z}_A = \underline{Z}_B = \underline{Z}_C$, rys. 15.1 oraz rys. 15.2

Rys. 15.1a) Odbiornik trójfazowy połączony w gwiazdę, układ trójprzewodowy, b) odbiornik trójfazowy połączony w trójkąt

ogólnie równa się potrójnej mocy odbiornika wytwarzanej w jednej fazie

$$P = 3P_A = 3U_{Af}I_{Af}\cos(\varphi_A) \tag{15.4}$$

$$Q = 3Q_A = 3U_{Af}I_{Af}\sin(\varphi_A)$$
(15.5)

$$S = 3S_A = 3U_{Af}I_{Af}$$
(15.6)

Korzystając z zależności łączących napięcie i prąd przewodowy i fazowy dla układów odbiornika połączonych w gwiazdę i trójkąt, wzory (15.7,15.8)

$$U_{AB} = \sqrt{3}U_A \tag{15.7}$$

$$I_A = \sqrt{3}I_{Af} \tag{15.8}$$

otrzymujemy wzory na moce wyrażone tylko przez wielkości przewodowe

$$P = \sqrt{3}U_{AB}I_A\cos(\varphi_A) \tag{15.9}$$

$$Q = \sqrt{3}U_{AB}I_A \sin(\varphi_A) \tag{15.10}$$

$$S = \sqrt{3U_{AB}I_A} \tag{15.11}$$

Na rys. 15.2 przedstawiono odbiornik trójfazowy połączony w gwiazdę w układzie czteroprzewodowym z przewodem neutralnym.

Ponieważ w układzie odbiornika trójfazowego połączonego w gwiazdę w układzie czteroprzewodowym wielkości napięcia i prądu przewodowego i fazowego są sobie równe, moc odbiornika symetrycznego wyraża się wzorem

$$P = 3U_A I_A \cos(\varphi_A) \tag{15.12}$$

$$Q = 3U_A I_A \sin(\varphi_A) \tag{15.13}$$

$$S = 3U_{AB}I_A \tag{15.14}$$

W przypadku odbiornika trójfazowego niesymetrycznego, to znaczy w którym spełniony jest warunek $\underline{Z}_A \neq \underline{Z}_B \neq \underline{Z}_C$, moc odbiornika oblicza się sumując moce na poszczególnych fazach

$$P = U_{Af}I_{Af}\cos(\varphi_A) + U_{Bf}I_{Bf}\cos(\varphi_B) + U_{Cf}I_{Cf}\cos(\varphi_C)$$
(14.15)

$$Q = U_{Af}I_{Af}\sin(\varphi_A) + U_{Bf}I_{Bf}\sin(\varphi_B) + U_{Cf}I_{Cf}\sin(\varphi_C)$$
(14.16)

$$S = U_{Af}I_{Af} + U_{Bf}I_{Bf} + U_{Cf}I_{Cf}$$
(14.17)

5	1
э	T

16. OBWODY TRÓJFAZOWE GENERATOR – ODBIORNIK

W rozdziale przedstawiono typowe układy spotykane w praktyce. Założono, że odbiornik ma charakter rezystancyjno – indukcyjno – pojemnościowy, gdzie rozpatruje się impedancję \underline{Z} odbiornika. Pojęcie impedancji wyjaśniono w rozdziale 13.

16.1. Układ gwiazda – gwiazda

Rozpatrzmy układ trójfazowy trójprzewodowy gwiazda – gwiazda rys. 16.1, w którym wiadome są chwilowe symetryczne siły elektromotoryczne źródeł

$$e_{A} = E_{Am}\sin(\omega t + \varphi_{e})$$
(16.1)

$$e_{B} = E_{Bm} \sin\left(\omega t + \varphi_{e} - \frac{2\pi}{3}\right)$$
(16.2)

$$e_{c} = E_{Cm} \sin\left(\omega t + \varphi_{e} - \frac{4\pi}{3}\right)$$
(16.3)

gdzie $E_{Am,Bm,Cm} = \sqrt{2} E_{A,B,C}$, $E_A = E_B = E_C$ – wartości skuteczne napięć e_A , e_B , e_C , (przebiegi czasowe (16.1, 16.2, 16.3) przedstawiamy później w postaci zespolonej, wzory następne (16.4, 16.5, 16.6)) oraz wiadome są impedancje odbiornika \underline{Z}_A , \underline{Z}_B , \underline{Z}_C . Szukane są prądy przewodowe i zarazem fazowe \underline{I}_A , \underline{I}_B , \underline{I}_C , spadki napięcia na odbiorniku \underline{U}_{Z_A} , \underline{U}_{Z_B} , \underline{U}_{Z_C} oraz napięcie niesymetrii \underline{U}_N .

Przypadek 1. Zakładamy, że odbiornik jest symetryczny, czyli $\underline{Z}_A = \underline{Z}_B = \underline{Z}_C$

Dla uproszczenia wprowadzamy metodę liczb zespolonych. Przedstawiamy przebiegi czasowe napięcia e_A , e_B , e_C (16.1, 16.2, 16.3) oraz impedancje odbiornika \underline{Z}_A , \underline{Z}_B , \underline{Z}_C w postaci zespolonej

$$\underline{E}_A = E_A e^{j\varphi_e} \tag{16.4}$$

$$\underline{E}_{B} = E_{B} e^{j\left(\varphi_{e} - \frac{2\pi}{3}\right)}$$
(16.5)

~	1
.)	Z

$$\underline{E}_{C} = E_{C} e^{j\left(\varphi_{c} - \frac{4\pi}{3}\right)}$$
(16.6)

$$\underline{Z}_m = Z_m e^{j\varphi_m} \tag{16.7}$$

$$Z_{m} = \sqrt{R_{m}^{2} + (X_{Lm} - X_{Cm})^{2}}$$
(16.8)

$$\varphi_{m} = \begin{cases} \arccos\left(\frac{R_{m}}{Z_{m}}\right) dla \ X_{Lm} > X_{Cm} \\ -\arccos\left(\frac{R_{m}}{Z_{m}}\right) dla \ X_{Lm} < X_{Cm} \end{cases}$$
(16.9)

gdzie m = A, B, C.

Przy odbiorniku symetrycznym potencjały neutralne generatora i odbiornika są równe, czyli napięcie niesymetrii $\underline{U}_{N} = 0$.

Wówczas prądy przewodowe i zarazem fazowe wyrażają się wzorami

$$\underline{I}_{A} = \frac{\underline{E}_{A}}{\underline{Z}_{A}} \tag{16.10}$$

$$\underline{I}_{B} = \frac{\underline{E}_{B}}{\underline{Z}_{B}}$$
(16.11)

$$\underline{I}_{C} = \frac{\underline{E}_{C}}{\underline{Z}_{C}} \tag{16.12}$$

Spadki napięcia \underline{U}_{Z_A} , \underline{U}_{Z_B} , \underline{U}_{Z_C} na impedancji odbiornika \underline{Z}_A , \underline{Z}_B , \underline{Z}_C równe są napięciom generatora

$$\underline{U}_{Z_A} = \underline{Z}_A \underline{I}_A = \underline{E}_A \tag{16.13}$$

$$\underline{U}_{Z_B} = \underline{Z}_B \underline{I}_B = \underline{E}_B \tag{16.14}$$

$$\underline{U}_{Z_c} = \underline{Z}_C \underline{I}_C = \underline{E}_C \tag{16.15}$$

Przesunięcia fazowe przebiegów zapisanych w postaci zespolonej wyznaczymy według wzoru

$$\varphi = \begin{cases} \operatorname{arctg}\left(\frac{\operatorname{Im}(\underline{X})}{\operatorname{Re}(\underline{X})}\right) & dla \quad \operatorname{Re}(\underline{X}) > 0, \quad \operatorname{Im}(\underline{X}) > 0 \\ -\operatorname{arctg}\left(\frac{\operatorname{Im}(\underline{X})}{\operatorname{Re}(\underline{X})}\right) & dla \quad \operatorname{Re}(\underline{X}) > 0, \quad \operatorname{Im}(\underline{X}) < 0 \\ \pi - \operatorname{arctg}\left(-\frac{\operatorname{Im}(\underline{X})}{\operatorname{Re}(\underline{X})}\right) & dla \quad \operatorname{Re}(\underline{X}) < 0, \quad \operatorname{Im}(\underline{X}) > 0 \end{cases}$$
(16.16)

$$\begin{vmatrix} \pi - \arctan\left(\frac{\operatorname{Im}(\underline{X})}{\operatorname{Re}(\underline{X})}\right) & dla \quad \operatorname{Re}(\underline{X}) < 0, \quad \operatorname{Im}(\underline{X}) < 0 \\ \frac{\pi}{2} & dla \quad \operatorname{Re}(\underline{X}) = 0, \quad \operatorname{Im}(\underline{X}) > 0 \\ -\frac{\pi}{2} & dla \quad \operatorname{Re}(\underline{X}) = 0, \quad \operatorname{Im}(\underline{X}) < 0 \\ 0 & dla \quad \operatorname{Re}(\underline{X}) > 0, \quad \operatorname{Im}(\underline{X}) = 0 \\ \pi & dla \quad \operatorname{Re}(\underline{X}) < 0, \quad \operatorname{Im}(\underline{X}) = 0 \end{aligned}$$

gdzie \underline{X} - przebieg czasowy zapisany w postaci zespolonej. Przesunięcia fazowe pomiędzy przebiegami wyznaczymy obliczając różnicę przesunięć fazowych. Na przykład przesunięcie fazowe pomiędzy przebiegami napięć generatora e_A , e_B , e_C a prądami przewodowym i zarazem fazowymi obwodu i_A , i_B , i_C wynosi

$$\varphi_{e_A,i_A} = \varphi_{e_A} - \varphi_{i_A} \tag{16.17}$$

$$\varphi_{e_R,i_R} = \varphi_{e_R} - \varphi_{i_R} \tag{16.18}$$

$$\varphi_{e_c,i_c} = \varphi_{e_c} - \varphi_{i_c} \tag{16.19}$$

Uwaga !

Jeżeli odbiornik jest symetryczny i zachodzi potrzeba wyznaczenia w układzie tylko wartości skutecznych napięcia i prądu, można skorzystać z następujących wzorów

$$I_A = \frac{E_A}{Z_A} \tag{16.20}$$

$$U_{Z_A} = E_A \tag{16.21}$$

Przesunięcie fazowe pomiędzy przebiegiem napięcia na odbiorniku u_{Z_A} a przebiegiem prądu przepływającego przez odbiornik i_A można wyznaczyć z trójkąta impedancji odbiornika, tzn.

$$\varphi_{u_{Z_A}, i_A} = \begin{cases} \arccos\left(\frac{R_A}{Z_A}\right) dla \ X_{L,A} > X_{C,A} \\ -\arccos\left(\frac{R_A}{Z_A}\right) dla \ X_{L,A} < X_{C,A} \end{cases}$$
(16.22)

Wartości skuteczne napięcia i prądu oraz przesunięcia fazowego we wszystkich fazach, dla układu symetrycznego, są równe.

Przykład

Na rys. 16.2 przedstawiono wykres wskazowy dla wartości skutecznych

symetrycznego układu gwiazda – gwiazda dla $E_A = E_B = E_C = 220 \text{ V},$ $\varphi_e = 90^\circ, \quad \underline{Z}_A = \underline{Z}_B = \underline{Z}_C = R + jX, \quad R = 2 \Omega, \quad X = 1 \Omega, \quad \text{czyli odbiornik}$ symetryczny o charakterze rezystancyjno – indukcyjnym.

Rys. 16.2. Wykres wskazowy układu symetrycznego gwiazda – gwiazda dla wartości skutecznych

Po obliczeniach obwodu uzyskano następujące wyniki, wartości skuteczne prądów przewodowych i zarazem fazowych $I_A = I_B = I_C = 98,3$ A, przesunięcia fazowe wektorów prądu $\varphi_{I_A} = 63,4^\circ$, $\varphi_{I_B} = -56,5^\circ$, $\varphi_{I_C} = -176,5^\circ$, przesunięcia fazowe pomiędzy wektorami napięć generatora E_A , E_B , E_C a wektorami prądu I_A , I_B , I_C wynoszą $\varphi_{E_A,I_A} = \varphi_{E_B,I_B} = \varphi_{E_C,I_C} = 26,5^\circ$. Przesunięcia fazowe wektorów odpowiadają przesunięciom fazowym odpowiednich przebiegów czasowych.

Przypadek 2. Zakładamy, że odbiornik jest niesymetryczny, czyli $\underline{Z}_A \neq \underline{Z}_B \neq \underline{Z}_C$

Podobnie jak w przypadku 1 wprowadzamy metodę liczb zespolonych i przedstawiamy przebiegi napięcia generatora e_A , e_B , e_C , wzory (16.1, 16.2, 16.3) oraz impedancje odbiornika w postaci zespolonej, tzn. \underline{E}_A , \underline{E}_B , \underline{E}_C wzory (16.4, 16.5, 16.6) oraz \underline{Z}_A , \underline{Z}_B , \underline{Z}_C wzory (16.7, 16.8, 16.9).

Przy odbiorniku niesymetrycznym, potencjały neutralne generatora i odbiornika są różne, czyli występuje napięcie niesymetrii \underline{U}_N

$$\underline{U}_{N} = \frac{\frac{1}{\underline{Z}_{A}} \underline{E}_{A} + \frac{1}{\underline{Z}_{B}} \underline{E}_{B} + \frac{1}{\underline{Z}_{C}} \underline{E}_{C}}{\frac{1}{\underline{Z}_{A}} + \frac{1}{\underline{Z}_{B}} + \frac{1}{\underline{Z}_{C}}}$$
(16.23)

Wówczas prądy przewodowe i zarazem fazowe <u>I</u>_A, <u>I</u>_B, <u>I</u>_C wyrażają się wzorami

$$\underline{I}_{A} = \frac{\underline{E}_{A} - \underline{U}_{N}}{\underline{Z}_{A}}$$
(16.24)

$$\underline{I}_{B} = \frac{\underline{E}_{B} - \underline{U}_{N}}{\underline{Z}_{B}}$$
(16.25)

$$\underline{I}_{c} = \frac{\underline{E}_{c} - \underline{U}_{N}}{\underline{Z}_{c}}$$
(16.26)

Spadki napięcia na impedancji odbiornika \underline{Z}_A , \underline{Z}_B , \underline{Z}_C wynoszą

$$\underline{U}_{Z_A} = \underline{Z}_A \underline{I}_A \tag{16.27}$$

$$\underline{U}_{Z_B} = \underline{Z}_B \underline{I}_B \tag{16.28}$$

$$\underline{U}_{Z_C} = \underline{Z}_C \underline{I}_C \tag{16.29}$$

Przesunięcia fazowe przebiegów zapisanych w postaci zespolonej wyznaczymy według wzoru (16.16), natomiast przesunięcia fazowe pomiędzy przebiegami wyznaczymy obliczając różnicę przesunięć fazowych, na przykład wzory (16.17, 16.18, 16.19).

Przykład

Na rys. 16.3 przedstawiono wykres wskazowy wartości skutecznych układu niesymetrycznego układu gwiazda – gwiazda dla $E_A = E_B = E_C = 220 \text{ V},$ $\varphi_e = 90^\circ, \quad \underline{Z}_A = \underline{Z}_B = \underline{Z}_C = R + jX, \quad R_A = 2 \Omega, \quad R_B = 1 \Omega, \quad R_C = 2 \Omega, \quad X_A = 1 \Omega,$ $X_B = 1 \Omega, \quad X_C = 0,5 \Omega, \quad \text{czyli odbiornik niesymetryczny o charakterze rezystancy-jno – indukcyjnym.}$

Po obliczeniach obwodu uzyskano następujące wyniki, wartości skuteczne prądów przewodowych i zarazem fazowych $I_A = 123,3$ A, $I_B = 126,9$ A, $I_C = 105,3$ A, przesunięcia fazowe wektora prądu $\varphi_{I_A} = 63,4^\circ$, $\varphi_{I_B} = -56,5^\circ$, $\varphi_{I_C} = -176,5^\circ$, wartości skuteczne spadku napięcia na odbiorniku $U_{Z_A} = 275,8$ V, $U_{Z_B} = 179,5$ V, $U_{Z_C} = 217,1$ V, przesunięcia fazowe wektora napięć na odbiorniku $\varphi_{u_{ZA}} = 94^\circ$, $\varphi_{u_{ZB}} = -17,7^\circ$, $\varphi_{u_{ZC}} = -165,3^\circ$, wartość skuteczna napięcia niesymetrii $U_N = 58$ V i przesunięcie fazowe $\varphi_{U_N} = -70,5^\circ$ oraz przesunięcie fazowe pomiędzy wektorami napięć generatora E_A , E_B , E_C a wektorami prądów I_A , I_B , $I_C \varphi_{E_A,I_A} = 22,5^\circ$, $\varphi_{E_B,I_B} = 32,7^\circ$, $\varphi_{E_C,I_C} = 29,4^\circ$. Przesunięcia fazowe wektorów odpowiadają przesunięciom fazowym odpowiednich przebiegów czasowych.

16.2. Układ gwiazda – gwiazda zwarty przewodem neutralnym

Rozpatrzmy układ trójfazowy gwiazda – gwiazda zwarty przewodem neutralnym rys. 16.4, w którym wiadome są chwilowe symetryczne siły elektromotoryczne źródeł

$$e_{A} = E_{Am} \sin(\omega t + \varphi_{e}) \tag{16.30}$$

$$e_{B} = E_{Bm} \sin\left(\omega t + \varphi_{e} - \frac{2\pi}{3}\right)$$
(16.31)

$$e_{c} = E_{Cm} \sin\left(\omega t + \varphi_{e} - \frac{4\pi}{3}\right)$$
(16.32)

gdzie $E_{Am,Bm,Cm} = \sqrt{2} E_{A,B,C}$, $E_A = E_B = E_C$ – wartości skuteczne napięć e_A , e_B , e_C , (przebiegi czasowe (16.30, 16.31, 16.32) przedstawiamy później w postaci zespolonej) oraz wiadome są impedancje odbiornika \underline{Z}_A , \underline{Z}_B , \underline{Z}_C . Szukane są prądy przewodowe i zarazem fazowe \underline{I}_A , \underline{I}_B , \underline{I}_C , prąd w przewodzie neutralnym \underline{I}_N , oraz spadki napięcia na odbiorniku \underline{U}_{Z_A} , \underline{U}_{Z_B} , \underline{U}_{Z_C} .

Przypadek 1. Zakładamy, że odbiornik jest symetryczny, czyli $\underline{Z}_A = \underline{Z}_B = \underline{Z}_C$

W przypadku odbiornika symetrycznego postępujemy podobnie jak w przypadku układu gwiazda – gwiazda bez przewodu neutralnego, punkt 16.1 przypadek 1. Wówczas przewód neutralny nic nie wnosi ponieważ samoistnie potencjał neutralny generatora równy jest potencjałowi neutralnemu odbiornika. Prąd w przewodzie neutralnym nie płynie, czyli $I_N = 0$.

Przypadek 2. Zakładamy, że odbiornik jest niesymetryczny, czyli $\underline{Z}_A \neq \underline{Z}_B \neq \underline{Z}_C$

Podobnie jak w punkcie 16.1 przypadek 1 wprowadzamy metodę liczb zespolonych i przedstawiamy przebiegi napięcia generatora e_A , e_B , e_C (16.30, 16.31, 16.32) oraz impedancje odbiornika w postaci zespolonej, tzn. \underline{E}_A , \underline{E}_B , \underline{E}_C , \underline{Z}_A , \underline{Z}_B , \underline{Z}_C , patrz punkt 16.1 wzory (16.4, 16.5, 16.6, 16.7, 16.8, 16.9).

Prądy przewodowe i zarazem fazowe IA, IB, IC wyznaczamy ze wzorów

$$\underline{I}_{A} = \frac{\underline{E}_{A}}{\underline{Z}_{A}} \tag{16.33}$$

$$\underline{I}_{B} = \frac{\underline{E}_{B}}{\underline{Z}_{B}}$$
(16.34)

$$\underline{I}_{C} = \frac{\underline{E}_{C}}{\underline{Z}_{C}} \tag{16.35}$$

Prąd w przewodzie neutralnym IN wyznaczamy według wzoru

$$\underline{I}_N = \underline{I}_A + \underline{I}_B + \underline{I}_C \tag{16.36}$$

Spadki napięcia \underline{U}_{Z_A} , \underline{U}_{Z_B} , \underline{U}_{Z_C} na impedancji odbiornika \underline{Z}_A , \underline{Z}_B , \underline{Z}_C równe są napięciom generatora

$$\underline{\underline{U}}_{Z_A} = \underline{\underline{Z}}_A \underline{\underline{I}}_A = \underline{\underline{E}}_A \tag{16.37}$$

$$\underline{U}_{Z_B} = \underline{Z}_B \underline{I}_B = \underline{E}_B \tag{16.38}$$

$$\underline{U}_{Z_C} = \underline{Z}_C \underline{I}_C = \underline{E}_C \tag{16.39}$$

Przesunięcia fazowe przebiegów zapisanych w postaci zespolonej wyznaczymy według wzoru (16.16), natomiast przesunięcia fazowe pomiędzy przebiegami wyznaczymy obliczając różnicę przesunięć fazowych, na przykład wzory (16.17, 16.18, 16.19).

Przykład

Na rys. 16.5 przedstawiono wykres wskazowy wartości skutecznych niesymetrycznego układu gwiazda – gwiazda zwartego przewodem neutralnym dla $E_A = E_B = E_C = 220 \text{ V}, \ \varphi_e = 90^\circ, \ \underline{Z}_{A,B,C} = R_{A,B,C} + jX_{A,B,C}, \ R_A = 2 \Omega, \ R_B = 1 \Omega, \ R_C = 1 \Omega, \ X_A = 1 \Omega, \ X_B = 2 \Omega, \ \overline{X}_C = -0.5 \Omega, \ \text{czyli odbiornik niesymetryczny}$ o charakterze rezystancyjno – indukcyjno – pojemnościowym.

Rys. 16.5. Wykres wskazowy układu niesymetrycznego gwiazda – gwiazda zwarty przewodem neutralnym dla wartości skutecznych

Po obliczeniach obwodu uzyskano następujące wyniki, wartości skuteczne prądów przewodowych i zarazem fazowych $I_A = 98,3$ A, $I_B = 98,3$ A, $I_C = 196,7$ A, przesunięcia fazowe wektora prądu $\varphi_{I_A} = 63,4^\circ$, $\varphi_{I_B} = -93,4^\circ$, $\varphi_{I_C} = -123,4^\circ$, wartość skuteczna prądu w przewodzie neutralnym $I_N = 188$ A, przesunięcie fazowe wektora prądu w przewodzie neutralnym $\varphi_{IN} = -111,9^\circ$, przesunięcia fazowe pomiędzy wektorami napięć generatora E_A , E_B , E_C a wektorami prądu I_A , I_B , I_C wynoszą $\varphi_{E_A,I_A} = 26,5^\circ$, $\varphi_{E_B,I_B} = 63,4^\circ$, $\varphi_{E_C,I_C} = -26,5^\circ$. Przesunięcia fazowe wektorów odpowiadają przesunięciom fazowym odpowiednich przebiegów czasowych.

16.3. Układ gwiazda – gwiazda z impedancją w przewodzie neutralnym

Rozpatrzmy układ trójfazowy gwiazda – gwiazda z impedancją w przewodzie neutralnym rys. 16.6, w którym wiadome są chwilowe symetryczne siły elektromotoryczne źródeł

$$e_{A} = E_{Am} \sin(\omega t + \varphi_{e}) \tag{16.40}$$

$$e_{B} = E_{Bm} \sin\left(\omega t + \varphi_{e} - \frac{2\pi}{3}\right)$$
(16.41)

$$e_{c} = E_{Cm} \sin\left(\omega t + \varphi_{e} - \frac{4\pi}{3}\right)$$
(16.42)

gdzie $E_{Am,Bm,Cm} = \sqrt{2} E_{A,B,C}$, $E_A = E_B = E_C$ – wartości skuteczne napięć e_A , e_B , e_C , (przebiegi czasowe (16.40, 16.41, 16.42) przedstawiamy później w postaci zespolonej) oraz wiadome są impedancje odbiornika \underline{Z}_A , \underline{Z}_B , \underline{Z}_C i impedancja w przewodzie neutralnym \underline{Z}_N . Szukane są prądy przewodowe i zarazem fazowe \underline{I}_A , \underline{I}_B , \underline{I}_C , spadki napięcia na odbiorniku \underline{U}_{Z_A} , \underline{U}_{Z_B} , \underline{U}_{Z_C} oraz prąd w przewodzie neutralnym \underline{I}_N oraz napięcie niesymetrii \underline{U}_N .

Przypadek 1. Zakładamy, że odbiornik jest symetryczny, czyli $\underline{Z}_A = \underline{Z}_B = \underline{Z}_C$

W przypadku odbiornika symetrycznego postępujemy podobnie jak w przypadku

układu gwiazda – gwiazda bez przewodu neutralnego, punkt 16.1 przypadek 1. Wówczas impedancja w przewodzie neutralnym nic nie wnosi ponieważ samoistnie potencjał neutralny generatora równy jest potencjałowi neutralnemu odbiornika, czyli $\underline{U}_N = 0$. Prąd w przewodzie neutralnym nie płynie, $\underline{I}_N = 0$.

Przypadek 2. Zakładamy, że odbiornik jest niesymetryczny, czyli $\underline{Z}_A \neq \underline{Z}_B \neq \underline{Z}_C$

Podobnie jak w punkcie 16.1 przypadek 1 wprowadzamy metodę liczb zespolonych i przedstawiamy przebiegi napięcia generatora e_A , e_B , e_C (16.40, 16.41, 16.42), impedancje odbiornika oraz impedancje w przewodzie neutralnym w postaci zespolonej, tzn. \underline{E}_A , \underline{E}_B , \underline{E}_C , \underline{Z}_A , \underline{Z}_B , \underline{Z}_C , \underline{Z}_N , patrz punkt 16.1 wzory (16.4, 16.5, 16.6, 16.7, 16.8, 16.9).

Przy odbiorniku niesymetrycznym, potencjały neutralne generatora i odbiornika są różne, czyli występuje napięcie niesymetrii \underline{U}_N

$$\underline{U}_{N} = \frac{\frac{1}{\underline{Z}_{A}} \underline{E}_{A} + \frac{1}{\underline{Z}_{B}} \underline{E}_{B} + \frac{1}{\underline{Z}_{C}} \underline{E}_{C}}{\frac{1}{\underline{Z}_{A}} + \frac{1}{\underline{Z}_{B}} + \frac{1}{\underline{Z}_{C}} + \frac{1}{\underline{Z}_{N}}}$$
(16.43)

Wówczas prądy przewodowe i zarazem fazowe <u>I</u>_A, <u>I</u>_B, <u>I</u>_C wyrażają się wzorami

$$\underline{I}_{A} = \frac{\underline{E}_{A} - \underline{U}_{N}}{\underline{Z}_{A}}$$
(16.44)

$$\underline{I}_{B} = \frac{\underline{E}_{B} - \underline{U}_{N}}{\underline{Z}_{B}}$$
(16.45)

$$\underline{I}_{c} = \frac{\underline{E}_{c} - \underline{U}_{N}}{\underline{Z}_{c}}$$
(16.46)

Spadki napięcia na impedancji odbiornika \underline{Z}_A , \underline{Z}_B , \underline{Z}_C wynoszą

$$\underline{U}_{Z_A} = \underline{Z}_A \underline{I}_A \tag{16.47}$$

$$\underline{U}_{Z_B} = \underline{Z}_B \underline{I}_B \tag{16.48}$$

$$\underline{U}_{z_c} = \underline{Z}_c \underline{I}_c \tag{16.49}$$

Prąd w przewodzie neutralnym <u>I</u>_N wyznacza się ze wzoru

$$\underline{I}_N = \underline{I}_A + \underline{I}_B + \underline{I}_C \tag{16.50}$$

lub

$$\underline{I}_{N} = \frac{\underline{U}_{N}}{\underline{Z}_{N}}$$
(16.51)